A~local limit theorem for unequally distributed random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 2, pp. 348-351

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi_1,\dots,\xi_n$ be a sequence of independent random variables. Form another sequence $$ \eta_n=\frac{\xi_1+\dots+\xi_n}{B_n}-A_n.\eqno(1) $$ Suppose that for any $n$ $\xi_n$ has one of $\tau$ absolutely continuous distributions $$ F_1(x),F_2(x),\dots,F_\tau(x) $$ The following assertion is proved. For the sequence of the densities $p_n(x)$ of the sums (1) to converge uniformly to the density of a limit law for some $B_n>0$, $A_n$ it is necessary and sufficient that 1. $\mathbf P\{\eta_n$ weakly ($G$ is the limit law). 2. There exists such an $N$ that $p_N(x)$ is bounded.
@article{TVP_1968_13_2_a14,
     author = {V. M. Kruglov},
     title = {A~local limit theorem for unequally distributed random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {348--351},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a14/}
}
TY  - JOUR
AU  - V. M. Kruglov
TI  - A~local limit theorem for unequally distributed random variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1968
SP  - 348
EP  - 351
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a14/
LA  - ru
ID  - TVP_1968_13_2_a14
ER  - 
%0 Journal Article
%A V. M. Kruglov
%T A~local limit theorem for unequally distributed random variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1968
%P 348-351
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a14/
%G ru
%F TVP_1968_13_2_a14
V. M. Kruglov. A~local limit theorem for unequally distributed random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 13 (1968) no. 2, pp. 348-351. http://geodesic.mathdoc.fr/item/TVP_1968_13_2_a14/