On a~probability problem for a~one-dimensional heat equation
Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 4, pp. 727-729

Voir la notice de l'article provenant de la source Math-Net.Ru

The system (2) for random amplitudes $W_i(t)$ (where $f(t)$ is the derivative of a Wiener process) was considered in [1] in connection with the stochastic heat equation (1) and the two following assertions were obtained: (a) a solution of the system (2) is a random (normal) element in the Hilbert space $l_2$ for every $t>0$; (b) almost all solutions $\{W_i(t)\}$ are rapidly decreasing sequences for every $t>0$. In the present note a simple proof of the assertion (a) is given and the assertion (b) is shown to be wrong.
@article{TVP_1967_12_4_a10,
     author = {N. N. Vakhania},
     title = {On a~probability problem for a~one-dimensional heat equation},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {727--729},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {1967},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1967_12_4_a10/}
}
TY  - JOUR
AU  - N. N. Vakhania
TI  - On a~probability problem for a~one-dimensional heat equation
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1967
SP  - 727
EP  - 729
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1967_12_4_a10/
LA  - ru
ID  - TVP_1967_12_4_a10
ER  - 
%0 Journal Article
%A N. N. Vakhania
%T On a~probability problem for a~one-dimensional heat equation
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1967
%P 727-729
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1967_12_4_a10/
%G ru
%F TVP_1967_12_4_a10
N. N. Vakhania. On a~probability problem for a~one-dimensional heat equation. Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 4, pp. 727-729. http://geodesic.mathdoc.fr/item/TVP_1967_12_4_a10/