On the number of observations necessary for the distinction between two proximate hypotheses
Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 3, pp. 575-582
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of distinction between the following two proximate hypotheses $\mathbf H_0$: the population density is equal to $p_0(x)$ and $\mathbf H_\alpha$: the population density is equal to $p_\alpha(x)$, where $p_\alpha(x)\to p_0(x)$ as $\alpha\to0$, using the results of independent observations is considered.
In the case when $\alpha$ is a one dimensional parameter the Petrov–Aivazyan formula [1] for the number of observations nesessary for the distinction between hypotheses $\mathbf H_0$ and $\mathbf H_\alpha$ according to the Neumann–Pearson criterion with given probabilities of errors of the first $(\varepsilon)$ and second $(\omega)$ type is improved up to the members of order $O(1)$. A possibility of application of the results of this article to the problem of testing the hypotheses on the types of distributions given a large number of small simples is demonstrated by the example of the distinction between two gamma-types.
@article{TVP_1967_12_3_a19,
author = {I. N. Volodin},
title = {On the number of observations necessary for the distinction between two proximate hypotheses},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {575--582},
publisher = {mathdoc},
volume = {12},
number = {3},
year = {1967},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a19/}
}
TY - JOUR AU - I. N. Volodin TI - On the number of observations necessary for the distinction between two proximate hypotheses JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1967 SP - 575 EP - 582 VL - 12 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a19/ LA - ru ID - TVP_1967_12_3_a19 ER -
I. N. Volodin. On the number of observations necessary for the distinction between two proximate hypotheses. Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 3, pp. 575-582. http://geodesic.mathdoc.fr/item/TVP_1967_12_3_a19/