On the Robbins--Monro Procedure in the Case of Several Roots
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 2, pp. 386-390
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $Y(x)$ be a family of random variables with distribution functions $H(y\mid x)$ and regression function $M(x)$. In this paper the Robbins–Monro procedure is considered
$$ 
X_{n+1}=X_n+a\operatorname{sgn}(\alpha-Y(X_n)) 
$$
where $X_1$ is an arbitrary number and $a$ is some positive number.
It is assumed that the equation $M(x)=\alpha$ has several roots. Suppose that
\begin{gather*}
\mathbf P(Y(X_n)>\alpha\mid X_n,M(Xn)>\alpha)\ge\frac12+\min(\zeta,\zeta|\alpha-M(X_n)|),
\\
\mathbf P(Y(X_n)\alpha\mid X_n,M(Xn)\alpha)\ge\frac12+\min(\zeta,\zeta|\alpha-M(X_n)|)
\end{gather*}
Let the following conditions be satisfied
\begin{gather*}
|M(x)-\alpha|>K\rho(X,\Theta_1)^s,\quad\rho(X,\Theta_1)\le\tau,
\\
|M(x)-\alpha|>M\quad\rho(X,\Theta_1)>\tau.
\end{gather*}
Then for any $\varepsilon>0$
$$
\limsup_{n\to\infty}\mathbf P(\rho(X_n,\theta)>\varepsilon)\le\eta(a),\quad\eta(a)\to0,\quad a\to0,
$$
where $\rho(X_n,\Theta)=\inf\limits_{\theta_i\in\Theta}|X_n-\theta_i|$ and $\Theta$ is the set of roots of the the regression function in which it decreases.
			
            
            
            
          
        
      @article{TVP_1967_12_2_a17,
     author = {T. P. Krasulina},
     title = {On the {Robbins--Monro} {Procedure} in the {Case} of {Several} {Roots}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {386--390},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {1967},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1967_12_2_a17/}
}
                      
                      
                    T. P. Krasulina. On the Robbins--Monro Procedure in the Case of Several Roots. Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 2, pp. 386-390. http://geodesic.mathdoc.fr/item/TVP_1967_12_2_a17/
