On Martin Boundaries for the Direct Product of Markov Chains
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 2, pp. 353-358
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $X^i$ be denumerable Markov chains in state spaces $E^i$ with transition matrices $P^i$ $(i=1,2)$. A function $f(x^1,x^2)$ ($x^1\in E^1$, $x^2\in E^2$) is harmonic for chain $X^1\times X^2$ if
$$
(P^1\times P^2)f=f.
$$
It is proved that every minimal harmonic function for chain $X^1\times X^2$ may be represented in the form
$$
f(x^1,x^2)=\varphi(x^1)\psi(x^2)
$$
where functions $\varphi(x^1)$ and $\psi(x^2)$ are such that
$$
\begin{matrix}
P^1\varphi=\alpha\varphi
\\
\alpha\beta=1
\\
P^2\psi=\beta\psi
\end{matrix}
$$
In this way the Martin boundary for chain $X^1\times X^2$ is described in terms of the Martin boundaries for chains $X^1$ and $X^2$.
			
            
            
            
          
        
      @article{TVP_1967_12_2_a11,
     author = {S. A. Molchanov},
     title = {On {Martin} {Boundaries} for the {Direct} {Product} of {Markov} {Chains}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {353--358},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {1967},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1967_12_2_a11/}
}
                      
                      
                    S. A. Molchanov. On Martin Boundaries for the Direct Product of Markov Chains. Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 2, pp. 353-358. http://geodesic.mathdoc.fr/item/TVP_1967_12_2_a11/
