On Martin Boundaries for the Direct Product of Markov Chains
Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 2, pp. 353-358

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X^i$ be denumerable Markov chains in state spaces $E^i$ with transition matrices $P^i$ $(i=1,2)$. A function $f(x^1,x^2)$ ($x^1\in E^1$, $x^2\in E^2$) is harmonic for chain $X^1\times X^2$ if $$ (P^1\times P^2)f=f. $$ It is proved that every minimal harmonic function for chain $X^1\times X^2$ may be represented in the form $$ f(x^1,x^2)=\varphi(x^1)\psi(x^2) $$ where functions $\varphi(x^1)$ and $\psi(x^2)$ are such that $$ \begin{matrix} P^1\varphi=\alpha\varphi \\ \alpha\beta=1 \\ P^2\psi=\beta\psi \end{matrix} $$ In this way the Martin boundary for chain $X^1\times X^2$ is described in terms of the Martin boundaries for chains $X^1$ and $X^2$.
@article{TVP_1967_12_2_a11,
     author = {S. A. Molchanov},
     title = {On {Martin} {Boundaries} for the {Direct} {Product} of {Markov} {Chains}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {353--358},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {1967},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1967_12_2_a11/}
}
TY  - JOUR
AU  - S. A. Molchanov
TI  - On Martin Boundaries for the Direct Product of Markov Chains
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1967
SP  - 353
EP  - 358
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1967_12_2_a11/
LA  - ru
ID  - TVP_1967_12_2_a11
ER  - 
%0 Journal Article
%A S. A. Molchanov
%T On Martin Boundaries for the Direct Product of Markov Chains
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1967
%P 353-358
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1967_12_2_a11/
%G ru
%F TVP_1967_12_2_a11
S. A. Molchanov. On Martin Boundaries for the Direct Product of Markov Chains. Teoriâ veroâtnostej i ee primeneniâ, Tome 12 (1967) no. 2, pp. 353-358. http://geodesic.mathdoc.fr/item/TVP_1967_12_2_a11/