Limit theorems in a scheme of disposal of particles in cells
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 4, pp. 696-700
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider two schemes of disposal of $n$ particles into $N$ cells. In scheme I each particle may fall into any cell with the same probability $1/N$ independently of what happens to the other particles. In scheme II $n$ particles are divided in $n/m$ groups each group containing $m$ particles. The groups are disposed at random into $N$ cells independently of each other all particles of any group being disposed in different cells. Theprobability of any disposal of $m$ particles of each group is equal to $1/С^m_N$. Let $\mu_r(\mu_r')$ be the number of cells containing exactly $r$ particles in scheme I (II). We prove that the limit theorems for $\mu_r$ and $\mu'_r$ as $n$, $N\to\infty$ are the same.
			
            
            
            
          
        
      @article{TVP_1966_11_4_a9,
     author = {B. A. Sevast'yanov},
     title = {Limit theorems in a scheme of disposal of particles in cells},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {696--700},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {1966},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1966_11_4_a9/}
}
                      
                      
                    B. A. Sevast'yanov. Limit theorems in a scheme of disposal of particles in cells. Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 4, pp. 696-700. http://geodesic.mathdoc.fr/item/TVP_1966_11_4_a9/
