Approximately minimax detecting of a~vector signal in Gaussian noise
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 4, pp. 561-578
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In a normal vector sample $(X_1,\dots,X_N)^T$ of independent identically distributed variables $X_i\in\mathscr N(\xi,\Sigma)$, the сovarianсe matrix $\Sigma$ is not supposed to be known, and the hypothesis $H_0$: $\xi=0$ against $H_1$: $N\xi^T\Sigma^{-1}\xi=\delta$ is tested. The Hotelling test
$$ 
\Phi_N^0\colon T^2=N(N-1)X^TS^{-1}X>T_\varepsilon^2
$$
where
$$ 
\overline X=N^{-1}\sum_{i=1}^NX_i;\quad S=\sum_{i=1}^N(X_i-X)(X_i-X)^T
$$
is proved to be approximately minimax for large samples in the following sense: for all (randomized) tests $\Phi$ of level $\alpha=\alpha_N$ under conditions
$$
O(\exp[-(\ln N)^{1/6}])\le\alpha\le1-O(\exp[-(\ln N)^{1/6}])
$$
and $\delta$'s under condition
$$
\exp[-(\ln N)^{1/6}]\le\delta\le(\ln N)^{1/6}
$$
we have
$$ 
\sup_\Phi\inf_{\theta\in H_1}\mathbf E_\theta\Phi-\inf_{\theta\in H_1}\mathbf E_\theta\Phi_N^0=O_\varepsilon\biggl(\frac1{N^{i-\varepsilon}}\biggr)
$$
for any $\varepsilon>0$.
			
            
            
            
          
        
      @article{TVP_1966_11_4_a0,
     author = {Yu. V. Linnik},
     title = {Approximately minimax detecting of a~vector signal in {Gaussian} noise},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {561--578},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {1966},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1966_11_4_a0/}
}
                      
                      
                    Yu. V. Linnik. Approximately minimax detecting of a~vector signal in Gaussian noise. Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 4, pp. 561-578. http://geodesic.mathdoc.fr/item/TVP_1966_11_4_a0/
