Approximately minimax detecting of a~vector signal in Gaussian noise
Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 4, pp. 561-578

Voir la notice de l'article provenant de la source Math-Net.Ru

In a normal vector sample $(X_1,\dots,X_N)^T$ of independent identically distributed variables $X_i\in\mathscr N(\xi,\Sigma)$, the сovarianсe matrix $\Sigma$ is not supposed to be known, and the hypothesis $H_0$: $\xi=0$ against $H_1$: $N\xi^T\Sigma^{-1}\xi=\delta$ is tested. The Hotelling test $$ \Phi_N^0\colon T^2=N(N-1)X^TS^{-1}X>T_\varepsilon^2 $$ where $$ \overline X=N^{-1}\sum_{i=1}^NX_i;\quad S=\sum_{i=1}^N(X_i-X)(X_i-X)^T $$ is proved to be approximately minimax for large samples in the following sense: for all (randomized) tests $\Phi$ of level $\alpha=\alpha_N$ under conditions $$ O(\exp[-(\ln N)^{1/6}])\le\alpha\le1-O(\exp[-(\ln N)^{1/6}]) $$ and $\delta$'s under condition $$ \exp[-(\ln N)^{1/6}]\le\delta\le(\ln N)^{1/6} $$ we have $$ \sup_\Phi\inf_{\theta\in H_1}\mathbf E_\theta\Phi-\inf_{\theta\in H_1}\mathbf E_\theta\Phi_N^0=O_\varepsilon\biggl(\frac1{N^{i-\varepsilon}}\biggr) $$ for any $\varepsilon>0$.
@article{TVP_1966_11_4_a0,
     author = {Yu. V. Linnik},
     title = {Approximately minimax detecting of a~vector signal in {Gaussian} noise},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {561--578},
     publisher = {mathdoc},
     volume = {11},
     number = {4},
     year = {1966},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1966_11_4_a0/}
}
TY  - JOUR
AU  - Yu. V. Linnik
TI  - Approximately minimax detecting of a~vector signal in Gaussian noise
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1966
SP  - 561
EP  - 578
VL  - 11
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1966_11_4_a0/
LA  - ru
ID  - TVP_1966_11_4_a0
ER  - 
%0 Journal Article
%A Yu. V. Linnik
%T Approximately minimax detecting of a~vector signal in Gaussian noise
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1966
%P 561-578
%V 11
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1966_11_4_a0/
%G ru
%F TVP_1966_11_4_a0
Yu. V. Linnik. Approximately minimax detecting of a~vector signal in Gaussian noise. Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 4, pp. 561-578. http://geodesic.mathdoc.fr/item/TVP_1966_11_4_a0/