A~systematic theory of exponential families of probability distributions
Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 3, pp. 483-494

Voir la notice de l'article provenant de la source Math-Net.Ru

Let us consider a family of density functions (1) which describes a completely geodesic surface $\gamma$ in $\mathbf H(\Omega,S,I)$, see [l], [4], $s=(s^1,\dots,s^n)$ being a canonical affine parameter. Let us introduce the natural parameter $t=(t_1,\dots,t_n)$ defined by relation (4). It may be proved that the canonical parameter $s$ and the corresponding natural parameter $t$ are connected by the Legendre transformation and forme a couple of biorthogonal “coordinate systems”. Theorem 2. A parameter $\theta$ of a smooth family of mutually absolutely continuous distributions admits a jointly efficient estimate if and only if the family is completely geodesic and $\theta$ is its natural parameter. A probability distribution $P\in\mathbf H(\Omega,S,I)$ will be called a constructive distribution if there exists a mapping $\omega=\varphi(x)$ of $E[0\le x\le1]$ into $\Omega$ such that $P\{A\}=$the length of $\{x\colon\varphi(x)\in A\}$ for all $A\in S$. In accordance with [9] there is a system of constructive conditional distributions $P\{d\omega\mid\xi(\omega)=u\}$ on ($\Omega,S$) for every constructive $P$ and any random variable $\xi$. Let us now consider a category of families of constructive distributions with constructive Markov morfisms (20), and thus induced equivalence relation of families that is analogous to the one introduced in [8]. Theorem 3. Two completely geodesic families $\gamma_1$ and $\gamma_2$ of constructive probability distributions are statistically equivalent if and only if $\psi_1(s)=\psi_2(s)$ far some common canonical coordinatization $s$. Theorem 4. If some canonical and some natural parametrizations of a constructive completely geodesic family $\gamma$ coinside then $\gamma$ is constructively equivalent to the family $\hat\gamma$ of normal distributions which have a common fixed matrix of variances, and the vector of means as their parameter. Some examples are considered.
@article{TVP_1966_11_3_a6,
     author = {N. N. Chentsov},
     title = {A~systematic theory of exponential families of probability distributions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {483--494},
     publisher = {mathdoc},
     volume = {11},
     number = {3},
     year = {1966},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a6/}
}
TY  - JOUR
AU  - N. N. Chentsov
TI  - A~systematic theory of exponential families of probability distributions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1966
SP  - 483
EP  - 494
VL  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a6/
LA  - ru
ID  - TVP_1966_11_3_a6
ER  - 
%0 Journal Article
%A N. N. Chentsov
%T A~systematic theory of exponential families of probability distributions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1966
%P 483-494
%V 11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a6/
%G ru
%F TVP_1966_11_3_a6
N. N. Chentsov. A~systematic theory of exponential families of probability distributions. Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 3, pp. 483-494. http://geodesic.mathdoc.fr/item/TVP_1966_11_3_a6/