On stochastic processes defined by differential equations
Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 2, pp. 240-259
Voir la notice de l'article provenant de la source Math-Net.Ru
Let the function $X_\varepsilon(\tau,\omega)$ be the solution of the problem (1.3). The main results of this paper are the following theorems.
Theorem 1. {\it If the function $F$ satisfies conditions (1.1), (1.2) and (1.4) the stochastic process $X_\varepsilon(\tau,\omega)$ has the following asymptotic behaviour
$$
\sup_{0\le\tau\le\tau_0}\mathbf M|X_\varepsilon(\tau,\omega)-x^0(\tau)|\to0\quad(\varepsilon\to0),
$$
where $x^0(\tau)$ is the solution of the problem} (1.5).
Theorem 2. {\it If $F$ satisfies conditions (3.1)–(3.4) and $\varepsilon\to0$ $n$-order distributions of the stochastic process $Y^{(\varepsilon)}(\tau,\omega)=\varepsilon^{-1/2}(X^{(\varepsilon)}(\tau,\omega)-x^0(\tau))$ approach those of the Gaussian Markov process} (3.6), (3.7).
In addition some applications of these theorems to problems of nonlinear mechanics are considered.
@article{TVP_1966_11_2_a1,
author = {R. Z. Khas'minskii},
title = {On stochastic processes defined by differential equations},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {240--259},
publisher = {mathdoc},
volume = {11},
number = {2},
year = {1966},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1966_11_2_a1/}
}
R. Z. Khas'minskii. On stochastic processes defined by differential equations. Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 2, pp. 240-259. http://geodesic.mathdoc.fr/item/TVP_1966_11_2_a1/