On stochastic processes defined by differential equations
Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 2, pp. 240-259

Voir la notice de l'article provenant de la source Math-Net.Ru

Let the function $X_\varepsilon(\tau,\omega)$ be the solution of the problem (1.3). The main results of this paper are the following theorems. Theorem 1. {\it If the function $F$ satisfies conditions (1.1), (1.2) and (1.4) the stochastic process $X_\varepsilon(\tau,\omega)$ has the following asymptotic behaviour $$ \sup_{0\le\tau\le\tau_0}\mathbf M|X_\varepsilon(\tau,\omega)-x^0(\tau)|\to0\quad(\varepsilon\to0), $$ where $x^0(\tau)$ is the solution of the problem} (1.5). Theorem 2. {\it If $F$ satisfies conditions (3.1)–(3.4) and $\varepsilon\to0$ $n$-order distributions of the stochastic process $Y^{(\varepsilon)}(\tau,\omega)=\varepsilon^{-1/2}(X^{(\varepsilon)}(\tau,\omega)-x^0(\tau))$ approach those of the Gaussian Markov process} (3.6), (3.7). In addition some applications of these theorems to problems of nonlinear mechanics are considered.
@article{TVP_1966_11_2_a1,
     author = {R. Z. Khas'minskii},
     title = {On stochastic processes defined by differential equations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {240--259},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {1966},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1966_11_2_a1/}
}
TY  - JOUR
AU  - R. Z. Khas'minskii
TI  - On stochastic processes defined by differential equations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1966
SP  - 240
EP  - 259
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1966_11_2_a1/
LA  - ru
ID  - TVP_1966_11_2_a1
ER  - 
%0 Journal Article
%A R. Z. Khas'minskii
%T On stochastic processes defined by differential equations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1966
%P 240-259
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1966_11_2_a1/
%G ru
%F TVP_1966_11_2_a1
R. Z. Khas'minskii. On stochastic processes defined by differential equations. Teoriâ veroâtnostej i ee primeneniâ, Tome 11 (1966) no. 2, pp. 240-259. http://geodesic.mathdoc.fr/item/TVP_1966_11_2_a1/