On an extremal problem in probability theory
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 3, pp. 579-584
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper considers the problem of finding the absolute maximum and the absolute minimum of functional (1) where $x$ and $y$ are two dependend vector-valued random variables and $Q(y\mid x)$ is an unknown conditional distribution function. The problem is solved when $I_Q(x)$ is a monotone function of all the variables $x$ and the density functions of the random variables $x$ and $y$ are known.
			
            
            
            
          
        
      @article{TVP_1965_10_3_a21,
     author = {G. D. Kartashov and A. N. Yavriyan},
     title = {On an extremal problem in probability theory},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {579--584},
     publisher = {mathdoc},
     volume = {10},
     number = {3},
     year = {1965},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1965_10_3_a21/}
}
                      
                      
                    G. D. Kartashov; A. N. Yavriyan. On an extremal problem in probability theory. Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 3, pp. 579-584. http://geodesic.mathdoc.fr/item/TVP_1965_10_3_a21/
