Some limit theorems for large deviations
Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 2, pp. 231-254
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\xi_1,\xi_2,\dots$ be a sequence of independent random variables with the same distribution function $F(x)$, $\mathbf E\xi_i=0$ and $\mathbf D\xi_i=1$. Let $F_n(x)$ be the distribution function of $\xi_k$. Let us denote $c_m=\mathbf E|\xi_k|^m$.
It is proved that if $c_m\infty$ than the following estimate for $1-F_n(x)$
$$
1-F_n(x)(1-F(y))+\exp\biggl\{2n\biggl[\frac{m\ln y-\ln nc_mK_m}y\biggr]^2+1\biggr\}\biggl[\frac{nc_mK_m}{y^m}\biggr]^{\frac xy}
$$
holds true where $x>0$, $y>0$ and $K_m=\bigl[1+\frac{(m+1)^{m+2}}{e^m}\bigr]$.
Then the optimal estimate (in the sense of dependence on $x$) of the remainder term in the central limit theorem when the condition $c_3\infty$ is satisfied is given. Namely we prove that
$$
|F_n(x\sqrt n)-\Phi(x)|\frac{Lc_3}{\sqrt n(1+|x|^3)}
$$
where $\Phi(x)$ it the standard normal law and $L$ is an absolute constant.
Besides Linnik–Petrov's results concerning large deviations are improved.
In conclusion an asymptotic expression for the remainder term in the global version of the central limit theorem when $c_3\infty$ is obtained.
@article{TVP_1965_10_2_a1,
author = {S. V. Nagaev},
title = {Some limit theorems for large deviations},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {231--254},
publisher = {mathdoc},
volume = {10},
number = {2},
year = {1965},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1965_10_2_a1/}
}
S. V. Nagaev. Some limit theorems for large deviations. Teoriâ veroâtnostej i ee primeneniâ, Tome 10 (1965) no. 2, pp. 231-254. http://geodesic.mathdoc.fr/item/TVP_1965_10_2_a1/