Uniformly-Optimal Strategies in Search Problems
Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 4, pp. 746-753
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $f(x)$ be the density function of the a priori distribution of a particle in $R^n$. The strategy of search is defined by a function $\alpha=\alpha(x,t)\geqq 0$, $\int_{R^n}\alpha(x,t)\,dx=1$. The probability of finding the particle at a point $x$ during time $t$, under the condition that it is there, using the strategy $\alpha$, is given by the functional II $(\int_0^t\alpha(x,t)\,dt,x)$. Let $P_\alpha(T)$ be the probability of finding the particle using the strategy $\alpha$ during the time $T$. A strategy $\alpha^*$ is uniformly optimal if $P_{\alpha^*}(T)=\sup\limits_\alpha P_\alpha (T)$ for any $T>0$. In a very general case we prove the existence of the strategy $\alpha^*$ and find its explicit form.
@article{TVP_1964_9_4_a19,
author = {V. I. Arkin},
title = {Uniformly-Optimal {Strategies} in {Search} {Problems}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {746--753},
publisher = {mathdoc},
volume = {9},
number = {4},
year = {1964},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1964_9_4_a19/}
}
V. I. Arkin. Uniformly-Optimal Strategies in Search Problems. Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 4, pp. 746-753. http://geodesic.mathdoc.fr/item/TVP_1964_9_4_a19/