Hitting Probability
Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 4, pp. 703-707

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H$ be a circle of radius $R$ containing a target $K_0$. The probability of the intersection of $K_0$ with a randomly chosen oval $K$ is computed. Assuming $K_0$ to be an oval and $K$ to be an ellipse of a fixed area $F$ we indicate parameters $a$ and $b$, for which $P$ attains its maximum.
@article{TVP_1964_9_4_a10,
     author = {E. Ge\v{c}auskas},
     title = {Hitting {Probability}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {703--707},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {1964},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1964_9_4_a10/}
}
TY  - JOUR
AU  - E. Gečauskas
TI  - Hitting Probability
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1964
SP  - 703
EP  - 707
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1964_9_4_a10/
LA  - ru
ID  - TVP_1964_9_4_a10
ER  - 
%0 Journal Article
%A E. Gečauskas
%T Hitting Probability
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1964
%P 703-707
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1964_9_4_a10/
%G ru
%F TVP_1964_9_4_a10
E. Gečauskas. Hitting Probability. Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 4, pp. 703-707. http://geodesic.mathdoc.fr/item/TVP_1964_9_4_a10/