Hitting Probability
Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 4, pp. 703-707
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $H$ be a circle of radius $R$ containing a target $K_0$. The probability of the intersection of $K_0$ with a randomly chosen oval $K$ is computed. Assuming $K_0$ to be an oval and $K$ to be an ellipse of a fixed area $F$ we indicate parameters $a$ and $b$, for which $P$ attains its maximum.
@article{TVP_1964_9_4_a10,
author = {E. Ge\v{c}auskas},
title = {Hitting {Probability}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {703--707},
year = {1964},
volume = {9},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1964_9_4_a10/}
}
E. Gečauskas. Hitting Probability. Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 4, pp. 703-707. http://geodesic.mathdoc.fr/item/TVP_1964_9_4_a10/