Hitting Probability
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 4, pp. 703-707
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $H$ be a circle of radius $R$ containing a target $K_0$. The probability of the intersection of $K_0$ with a randomly chosen oval $K$ is computed. Assuming $K_0$ to be an oval and $K$ to be an ellipse of a fixed area $F$ we indicate parameters $a$ and $b$, for which $P$ attains its maximum.
			
            
            
            
          
        
      @article{TVP_1964_9_4_a10,
     author = {E. Ge\v{c}auskas},
     title = {Hitting {Probability}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {703--707},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {1964},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1964_9_4_a10/}
}
                      
                      
                    E. Gečauskas. Hitting Probability. Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 4, pp. 703-707. http://geodesic.mathdoc.fr/item/TVP_1964_9_4_a10/
