Minimax Theorems for Games on Unit Square
Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 3, pp. 554-555
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a class of infinite games with unbounded cores and establish the existence of their value. It is shown that a game with the core
$$
K(x,y)=\begin{cases}
L(x,y),,
\\
\varphi(x),=y,
\\
M(x,y),>y,
\end{cases}
$$
where the functions $L$ and $M$ are defined and continuous on the triangles $0\leqq x\leqq y\leqq 1$, $0\leqq y\leqq x\leqq 1$, respectively, the function $\varphi$ is arbitrary and $L(0,0)\geqq M(0,0)$, $L(1,1)\leqq M(1,1)$, is a game with value.
@article{TVP_1964_9_3_a15,
author = {E. B. Janovskaya},
title = {Minimax {Theorems} for {Games} on {Unit} {Square}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {554--555},
publisher = {mathdoc},
volume = {9},
number = {3},
year = {1964},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1964_9_3_a15/}
}
E. B. Janovskaya. Minimax Theorems for Games on Unit Square. Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 3, pp. 554-555. http://geodesic.mathdoc.fr/item/TVP_1964_9_3_a15/