Boundary Problems in Some Two-Dimensional Random Walks
Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 3, pp. 401-430
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\xi _1^{(i)},\xi_2^{(i)},\dots$, $i=1,2$, be two sequences of independent random variables, $\xi_k^{(2)}>0$, $k=1,2,\dots$, $s_0^{(i)}=0$, $s_n^{(i)}=\sum\nolimits_{k=1}^n{\xi_k^{(i)}}$, $i=1,2$, $\bar s_n=\max_{0\leqq k\leqq n}s_k^{(1)}$, $\eta_t=\max\{{k:s_k^{(2)}$. We study the joint distribution of the random variables $\bar s_{\eta_t}$, $s_{\eta_t+1}^{(1)}$, $s_{\eta_t+1}^{(2)}$ including asymptotic expansions, and all the domains of deviations in which limit theorems of Cramer type hold. The random variables $\xi_k^{(1)}$, $k=1,2,\dots$, are assumed to have lattice distributions. The method used in this study is similar to [1].
@article{TVP_1964_9_3_a0,
author = {A. A. Borovkov and B. A. Rogozin},
title = {Boundary {Problems} in {Some} {Two-Dimensional} {Random} {Walks}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {401--430},
publisher = {mathdoc},
volume = {9},
number = {3},
year = {1964},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1964_9_3_a0/}
}
A. A. Borovkov; B. A. Rogozin. Boundary Problems in Some Two-Dimensional Random Walks. Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 3, pp. 401-430. http://geodesic.mathdoc.fr/item/TVP_1964_9_3_a0/