On Isomorphism Problem of Stationary Processes
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 2, pp. 318-326
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The central problem in ergodic theory is that of isomorphism. In the paper the sufficient condition for isomorphism of the stationary process $\xi=(\dots,\xi_{-1},\xi_0,\xi_1,\dots)$, $\xi_n=0$, $1,\dots,l$, with some stationary process $\eta=(\dots,\eta_{-1},\eta_0,\eta_1,\dots)$, $\eta_n=\alpha_1,\dots,\alpha_m$, $m\leqq l$, is found. This condition is expressed in terms of a one-dimensional distribution of the process $\xi$. Isomorphism is constructed with the aid of elementary codes
$$
(i)=\eta_1^i\eta_2^i\cdots\eta_{\omega_i}^i,\qquad i=1,\dots,l, 
$$
which code the elementary words
$$
(i)=\underbrace{i00\dots 0}_{\omega_i}.
$$
One of the examples considered proves that it is possible to construct a system of elementary codes for any arbitrary $l$ and $m$. This system possesses some properties which secure unique decoding of the sequence $\eta$.
			
            
            
            
          
        
      @article{TVP_1964_9_2_a9,
     author = {A. H. Zaslavskiǐ},
     title = {On {Isomorphism} {Problem} of {Stationary} {Processes}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {318--326},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1964},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1964_9_2_a9/}
}
                      
                      
                    A. H. Zaslavskiǐ. On Isomorphism Problem of Stationary Processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 2, pp. 318-326. http://geodesic.mathdoc.fr/item/TVP_1964_9_2_a9/
