Optimum Factorization of the Non-negative Matrix Functions
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 2, pp. 382-386
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The proposition about optimum factorization of a non-negative matrix function $f(\lambda)$ is generalized for the case where the unknown function $A(z)$ of class $H_2$ satisfies the inequality 
$$
A(e^{-i\lambda})A^*(e^{-i\lambda})\leqq 2\pi f(\lambda)
$$
instead of the usual equality 
$$
A(e^{-i\lambda})A^*(e^{-i\lambda})=2\pi f(\lambda).
$$
            
            
            
          
        
      @article{TVP_1964_9_2_a19,
     author = {Yu. L. \v{S}mul'yan},
     title = {Optimum {Factorization} of the {Non-negative} {Matrix} {Functions}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {382--386},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1964},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1964_9_2_a19/}
}
                      
                      
                    Yu. L. Šmul'yan. Optimum Factorization of the Non-negative Matrix Functions. Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 2, pp. 382-386. http://geodesic.mathdoc.fr/item/TVP_1964_9_2_a19/
