Optimum Factorization of the Non-negative Matrix Functions
Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 2, pp. 382-386

Voir la notice de l'article provenant de la source Math-Net.Ru

The proposition about optimum factorization of a non-negative matrix function $f(\lambda)$ is generalized for the case where the unknown function $A(z)$ of class $H_2$ satisfies the inequality $$ A(e^{-i\lambda})A^*(e^{-i\lambda})\leqq 2\pi f(\lambda) $$ instead of the usual equality $$ A(e^{-i\lambda})A^*(e^{-i\lambda})=2\pi f(\lambda). $$
@article{TVP_1964_9_2_a19,
     author = {Yu. L. \v{S}mul'yan},
     title = {Optimum {Factorization} of the {Non-negative} {Matrix} {Functions}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {382--386},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1964},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1964_9_2_a19/}
}
TY  - JOUR
AU  - Yu. L. Šmul'yan
TI  - Optimum Factorization of the Non-negative Matrix Functions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1964
SP  - 382
EP  - 386
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1964_9_2_a19/
LA  - ru
ID  - TVP_1964_9_2_a19
ER  - 
%0 Journal Article
%A Yu. L. Šmul'yan
%T Optimum Factorization of the Non-negative Matrix Functions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1964
%P 382-386
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1964_9_2_a19/
%G ru
%F TVP_1964_9_2_a19
Yu. L. Šmul'yan. Optimum Factorization of the Non-negative Matrix Functions. Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 2, pp. 382-386. http://geodesic.mathdoc.fr/item/TVP_1964_9_2_a19/