Periods of Pseudo-Random Sequences
Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 2, pp. 367-373

Voir la notice de l'article provenant de la source Math-Net.Ru

Sequences of pseudo-random numbers are usually generated by recurrence formulas of the type (1). In order to increase the length $L$ of the non-periodic part of a sequence, the “perturbed” sequence (2) may be used. The asymptotic distributions (3) and (4) of $L$ and $P$ are derived from elementary probability considerations, where $P$ is the length of the period that has been formed. It follows from (5) that in that case one can expect an increase in $L$ and $P$ by the factor $\sqrt M$. A numerical example shows that such distributions may be of practical value, though $P$ can hardly be regarded as random.
@article{TVP_1964_9_2_a16,
     author = {I. M. Sobol'},
     title = {Periods of {Pseudo-Random} {Sequences}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {367--373},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1964},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1964_9_2_a16/}
}
TY  - JOUR
AU  - I. M. Sobol'
TI  - Periods of Pseudo-Random Sequences
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1964
SP  - 367
EP  - 373
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1964_9_2_a16/
LA  - ru
ID  - TVP_1964_9_2_a16
ER  - 
%0 Journal Article
%A I. M. Sobol'
%T Periods of Pseudo-Random Sequences
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1964
%P 367-373
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1964_9_2_a16/
%G ru
%F TVP_1964_9_2_a16
I. M. Sobol'. Periods of Pseudo-Random Sequences. Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 2, pp. 367-373. http://geodesic.mathdoc.fr/item/TVP_1964_9_2_a16/