On Local Limit Theorems for the Sums of Independent Random Variables
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 2, pp. 343-352
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $X_1,X_2,\dots$ be a sequence of independent identically distributed random variables, ${\mathbf E}X_1=m$, ${\mathbf D}X_1=\sigma^2>0$, and ${\mathbf E}|X_1|^k\infty$ for some integer $k\geqq 3$. The following theorem is proved: 
Suppose that the variable $Z_n=\dfrac1{\sigma\sqrt n}\Bigl(\sum\limits_{j=1}^n{X_j-nm}\Bigr)$ has an absolutely continuous distribution with bounded density function $p_n(x)$ for some integer $n=n_0$. Then there exists a function $\varepsilon(n)$ such that lim $\varepsilon(n)=0$ and relation (1) is fulfilled.
A similar theorem is proved for the case when $X_1$ has a lattice distribution. Some consequences of these theorems concerning convergence to the normal law in the mean are discussed.
			
            
            
            
          
        
      @article{TVP_1964_9_2_a12,
     author = {V. V. Petrov},
     title = {On {Local} {Limit} {Theorems} for the {Sums} of {Independent} {Random} {Variables}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {343--352},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {1964},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1964_9_2_a12/}
}
                      
                      
                    V. V. Petrov. On Local Limit Theorems for the Sums of Independent Random Variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 2, pp. 343-352. http://geodesic.mathdoc.fr/item/TVP_1964_9_2_a12/
