On the Central Limit Theorem for Random Elements with Values in a Hiilbert Space
Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 1, pp. 43-52
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\{{X_k}\}$ be a sequence of independent random elements with values in a separable Hilbert space $H$ such that ${\mathbf M}\|X_k\|^2<\infty$, $k=1,2,\dots$ . For simplicity, assume ${\mathbf M}X_k=\theta$, $k=1,2,\dots$, ($\theta$ is the identity of $H$) and let $Y_n=\sum\nolimits_{k=1}^n {X_k}$. Let $\Phi$ be a normal distribution on $H$ with the characteristic functional $\exp\{{-\tfrac{1}{2}(Sh,h)}\}$, $h\in H$, where $S$ is an $S$-operator. For a random element $X$ with values in $H$ let $Q_X$ be the distribution on $H$ generated by $X$ and $S_X$ the operator corresponding to the moment matrix of the distribution $Q_X$. A sequence of linear bounded operators $\{{A_n}\}$ is called a normalizing sequence for the sequence $\{{X_k}\}$ with respect to the $S$-operator $S$ if the relation (6) and (7) hold true for it. It is proved that if $\{{A_n}\}$ is a normalizing sequence for $\{{X_k}\}$ with respect to $S$ the distributions $Q_{A_n Y_n}$ converge weakly to $\Phi$ and the relation (8) is true if and only if the condition (9) is satisfied. This result generalizes the Lindeberg-Feller theorem.With a trivial exclusion there always exists a normalizing sequence $\{{A_n}\}$ such that $S_{A_n Y_n}=S^{(n)}$, $S^{(l_n )}$, $l_n\to\infty$, or $S$ (see the definition of $S^{(n)}$ in § 3).
@article{TVP_1964_9_1_a3,
author = {N. P. Kandelaki and V. V. Sazonov},
title = {On the {Central} {Limit} {Theorem} for {Random} {Elements} with {Values} in {a~Hiilbert} {Space}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {43--52},
year = {1964},
volume = {9},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1964_9_1_a3/}
}
TY - JOUR AU - N. P. Kandelaki AU - V. V. Sazonov TI - On the Central Limit Theorem for Random Elements with Values in a Hiilbert Space JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1964 SP - 43 EP - 52 VL - 9 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_1964_9_1_a3/ LA - ru ID - TVP_1964_9_1_a3 ER -
N. P. Kandelaki; V. V. Sazonov. On the Central Limit Theorem for Random Elements with Values in a Hiilbert Space. Teoriâ veroâtnostej i ee primeneniâ, Tome 9 (1964) no. 1, pp. 43-52. http://geodesic.mathdoc.fr/item/TVP_1964_9_1_a3/