Axiomatic Definition of the Value of a Matrix Game
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 8 (1963) no. 3, pp. 324-327
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let a real function $f$, whose argument is a matrix $A$, satisfy the following axioms: 
1. $f(\mathbf{\bar A})\geq(A)$ if $\mathbf{ \bar A}\geq A$; 
2. $f(\mathbf{\bar A})=f(A)$ if $A$ differs from $A$ only by a row, which is dominated by others; 
3. $f(-A^T)=-f(A)$, the index $T$ stands for transposition; 
4. $f(x)\geq x$ for a real number $x$. 
Then $f(A)$ is the game value function. Axioms $1$–$4$ are independent. Another similar set of axioms is given.
			
            
            
            
          
        
      @article{TVP_1963_8_3_a8,
     author = {\`E. I. Vilkas},
     title = {Axiomatic {Definition} of the {Value} of a {Matrix} {Game}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {324--327},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {1963},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1963_8_3_a8/}
}
                      
                      
                    È. I. Vilkas. Axiomatic Definition of the Value of a Matrix Game. Teoriâ veroâtnostej i ee primeneniâ, Tome 8 (1963) no. 3, pp. 324-327. http://geodesic.mathdoc.fr/item/TVP_1963_8_3_a8/
