Axiomatic Definition of the Value of a Matrix Game
Teoriâ veroâtnostej i ee primeneniâ, Tome 8 (1963) no. 3, pp. 324-327

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a real function $f$, whose argument is a matrix $A$, satisfy the following axioms: 1. $f(\mathbf{\bar A})\geq(A)$ if $\mathbf{ \bar A}\geq A$; 2. $f(\mathbf{\bar A})=f(A)$ if $A$ differs from $A$ only by a row, which is dominated by others; 3. $f(-A^T)=-f(A)$, the index $T$ stands for transposition; 4. $f(x)\geq x$ for a real number $x$. Then $f(A)$ is the game value function. Axioms $1$$4$ are independent. Another similar set of axioms is given.
@article{TVP_1963_8_3_a8,
     author = {\`E. I. Vilkas},
     title = {Axiomatic {Definition} of the {Value} of a {Matrix} {Game}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {324--327},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {1963},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1963_8_3_a8/}
}
TY  - JOUR
AU  - È. I. Vilkas
TI  - Axiomatic Definition of the Value of a Matrix Game
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1963
SP  - 324
EP  - 327
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1963_8_3_a8/
LA  - ru
ID  - TVP_1963_8_3_a8
ER  - 
%0 Journal Article
%A È. I. Vilkas
%T Axiomatic Definition of the Value of a Matrix Game
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1963
%P 324-327
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1963_8_3_a8/
%G ru
%F TVP_1963_8_3_a8
È. I. Vilkas. Axiomatic Definition of the Value of a Matrix Game. Teoriâ veroâtnostej i ee primeneniâ, Tome 8 (1963) no. 3, pp. 324-327. http://geodesic.mathdoc.fr/item/TVP_1963_8_3_a8/