On the Regularity of Spectral Densities
Teoriâ veroâtnostej i ee primeneniâ, Tome 8 (1963) no. 3, pp. 337-340
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $W(\theta)$ be an operator function representing the spectral density of a multidimensional stationary random sequence. In the case of finite-dimensional random sequences, it is well known that if $W$ satisfies the Szegö condition $$\int{\log W(\theta)d\theta\geq-cI,}$$ where $c$ is a constant and $I$ the unit operator, then the error of the best linear prediction of a sequence one step ahead will really be nonzero. In the present note, an example is constructed which shows that this assertion is no longer true in the infinite-dimensional case.
@article{TVP_1963_8_3_a11,
author = {Peter D. Lax},
title = {On the {Regularity} of {Spectral} {Densities}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {337--340},
publisher = {mathdoc},
volume = {8},
number = {3},
year = {1963},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_1963_8_3_a11/}
}
Peter D. Lax. On the Regularity of Spectral Densities. Teoriâ veroâtnostej i ee primeneniâ, Tome 8 (1963) no. 3, pp. 337-340. http://geodesic.mathdoc.fr/item/TVP_1963_8_3_a11/