On the Regularity of Spectral Densities
Teoriâ veroâtnostej i ee primeneniâ, Tome 8 (1963) no. 3, pp. 337-340

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $W(\theta)$ be an operator function representing the spectral density of a multidimensional stationary random sequence. In the case of finite-dimensional random sequences, it is well known that if $W$ satisfies the Szegö condition $$\int{\log W(\theta)d\theta\geq-cI,}$$ where $c$ is a constant and $I$ the unit operator, then the error of the best linear prediction of a sequence one step ahead will really be nonzero. In the present note, an example is constructed which shows that this assertion is no longer true in the infinite-dimensional case.
@article{TVP_1963_8_3_a11,
     author = {Peter D. Lax},
     title = {On the {Regularity} of {Spectral} {Densities}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {337--340},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {1963},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1963_8_3_a11/}
}
TY  - JOUR
AU  - Peter D. Lax
TI  - On the Regularity of Spectral Densities
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1963
SP  - 337
EP  - 340
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1963_8_3_a11/
LA  - en
ID  - TVP_1963_8_3_a11
ER  - 
%0 Journal Article
%A Peter D. Lax
%T On the Regularity of Spectral Densities
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1963
%P 337-340
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1963_8_3_a11/
%G en
%F TVP_1963_8_3_a11
Peter D. Lax. On the Regularity of Spectral Densities. Teoriâ veroâtnostej i ee primeneniâ, Tome 8 (1963) no. 3, pp. 337-340. http://geodesic.mathdoc.fr/item/TVP_1963_8_3_a11/