An Estimate of the Compounding Distribution of a~Compound Poisson Distribution
Teoriâ veroâtnostej i ee primeneniâ, Tome 8 (1963) no. 2, pp. 211-216
Voir la notice de l'article provenant de la source Math-Net.Ru
The distribution of a random variable $X$ is called a compound Poisson distribution if $${\mathbf P}\{X=n\}= \int_0^\infty{\frac{{\lambda^n}}{{n1}}}\varepsilon^{-\lambda}dG(\lambda),$$ where $n=0,1,2,\dots$ and $G(\lambda)$ is a distribution function (weight function) such that $G(+0)=0$. Let $X_1,\dots,X_N$ be mutually independent random variables which obey a compound Poisson distribution. The paper establishes a connection between the moment problem and the problem of evaluating the weight function $G(\lambda )$; an algorithm is constructed which allows one to construct a sampling estimate $\hat G_N(\lambda)$ which depends only on $X_1, \cdots,X_N$ and $\lambda$; if $N\to\infty$, then $\hat G_N(\lambda)$ converges weakly to the unknown weight function $G(\lambda)$ with probability $1$.
@article{TVP_1963_8_2_a9,
author = {H. G. Tucker},
title = {An {Estimate} of the {Compounding} {Distribution} of {a~Compound} {Poisson} {Distribution}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {211--216},
publisher = {mathdoc},
volume = {8},
number = {2},
year = {1963},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_1963_8_2_a9/}
}
H. G. Tucker. An Estimate of the Compounding Distribution of a~Compound Poisson Distribution. Teoriâ veroâtnostej i ee primeneniâ, Tome 8 (1963) no. 2, pp. 211-216. http://geodesic.mathdoc.fr/item/TVP_1963_8_2_a9/