An Estimate of the Compounding Distribution of a~Compound Poisson Distribution
Teoriâ veroâtnostej i ee primeneniâ, Tome 8 (1963) no. 2, pp. 211-216

Voir la notice de l'article provenant de la source Math-Net.Ru

The distribution of a random variable $X$ is called a compound Poisson distribution if $${\mathbf P}\{X=n\}= \int_0^\infty{\frac{{\lambda^n}}{{n1}}}\varepsilon^{-\lambda}dG(\lambda),$$ where $n=0,1,2,\dots$ and $G(\lambda)$ is a distribution function (weight function) such that $G(+0)=0$. Let $X_1,\dots,X_N$ be mutually independent random variables which obey a compound Poisson distribution. The paper establishes a connection between the moment problem and the problem of evaluating the weight function $G(\lambda )$; an algorithm is constructed which allows one to construct a sampling estimate $\hat G_N(\lambda)$ which depends only on $X_1, \cdots,X_N$ and $\lambda$; if $N\to\infty$, then $\hat G_N(\lambda)$ converges weakly to the unknown weight function $G(\lambda)$ with probability $1$.
@article{TVP_1963_8_2_a9,
     author = {H. G. Tucker},
     title = {An {Estimate} of the {Compounding} {Distribution} of {a~Compound} {Poisson} {Distribution}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {211--216},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {1963},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1963_8_2_a9/}
}
TY  - JOUR
AU  - H. G. Tucker
TI  - An Estimate of the Compounding Distribution of a~Compound Poisson Distribution
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1963
SP  - 211
EP  - 216
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1963_8_2_a9/
LA  - en
ID  - TVP_1963_8_2_a9
ER  - 
%0 Journal Article
%A H. G. Tucker
%T An Estimate of the Compounding Distribution of a~Compound Poisson Distribution
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1963
%P 211-216
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1963_8_2_a9/
%G en
%F TVP_1963_8_2_a9
H. G. Tucker. An Estimate of the Compounding Distribution of a~Compound Poisson Distribution. Teoriâ veroâtnostej i ee primeneniâ, Tome 8 (1963) no. 2, pp. 211-216. http://geodesic.mathdoc.fr/item/TVP_1963_8_2_a9/