On Optimum Methods in Quickest Detection Problems
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 8 (1963) no. 1, pp. 26-51
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper optimum methods are developed for observing a process (1), in which the moment when a "disorder" $\theta$ appears is not known. The basic quantity characterizing the quality of this observation method is the mean time delay $\tau$ for detection of a disorder. 
After making assumption (4) it is shown that for a set false alarm probability $\omega$ or for a set $\mathbf{N}$ – mathematical expectation of false alarm numbers occurring up till the moment the disorder appears the observation method minimizing $\tau=\tau(\omega)$ or $\tau=\tau(\mathbf{N})$ is based on an observation of aposteriori probability (23). 
In § 3 a case is considered, wherein the disorder appears on the background of steadystate conditions arising when the disordes is absent. A method is found for minimizing $\tau=\tau(\mathbf{T})$ for a set $\mathbf{T}$ – mathematical expectation of the time between two false alarms. The dependency $\tau=\tau(\mathbf{T})$ is given by formula (36).
			
            
            
            
          
        
      @article{TVP_1963_8_1_a1,
     author = {A. N. Shiryaev},
     title = {On {Optimum} {Methods} in {Quickest} {Detection} {Problems}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {26--51},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {1963},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1963_8_1_a1/}
}
                      
                      
                    A. N. Shiryaev. On Optimum Methods in Quickest Detection Problems. Teoriâ veroâtnostej i ee primeneniâ, Tome 8 (1963) no. 1, pp. 26-51. http://geodesic.mathdoc.fr/item/TVP_1963_8_1_a1/
