Consistent Families of Measures and Their Extensions
Teoriâ veroâtnostej i ee primeneniâ, Tome 7 (1962) no. 2, pp. 153-169

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Sigma$ be a family of Borel fields of subsets of a set $S$ and $\mu_{\mathfrak{S}}$ probabilistic measures on measurable spaces $\langle{\mathfrak{S},S}\rangle$, where $\mathfrak{S}\in\Sigma$. The family of measures $\mu_{\mathfrak{S}}$, $\mathfrak{S}\in\Sigma$, is denoted by $\mu_\Sigma$. The measures $\mu_{\mathfrak{S}_1}$ and $\mu_{\mathfrak{S}_2}$ are said to be consistent if $\mu_{\mathfrak{S}_1}(A)=\mu_{\mathfrak{S}_2}(A)$ for any $A\in\mathfrak{S}_1\cap\mathfrak{S}_2$. If any pair of measures of the family $\mu_\Sigma $ is consistent, the family itself is referred to as consistent. The consistent family $\mu_\Sigma$ is said to be extendable if there is a measure $\mu_{[\Sigma]}$ on the measurable space $\langle{[\Sigma ],S}\rangle$ consistent with each measure of $\mu_\Sigma$($[\Sigma]$ is the smallest Borel field containing all $\mathfrak{S}\in\Sigma$). For the purposes of the theory of games the following special case of extendability is important. Let ${\mathfrak{K}}$ be a finite complete complex and $M$ the set of its vertices. Let a finite set $S_a$ correspond to each vertex a of ${\mathfrak{K}}$ and the set $S_A=\Pi _{\alpha\in A}S_\alpha$ to each subset $A\subset M$. Let $$ \mathfrak{S}_K=\left\{{X_K:X_K=Y_K\times S_{M\setminus K},\,Y_K\subset S_K}\right\},\quad K\in{\mathfrak{K}};$$ $\mu _K$ is a measure on $\left\langle{\mathfrak{S}_K ,S_M}\right\rangle$ and $\mu _{\mathfrak{K}}$ is the family of all such measures. The extendability of the family $\mu _{\mathfrak{K}}$ is closely related with the combinatorial properties of the complex ${\mathfrak{K}}$. Any maximal face of the complex ${\mathfrak{K}}$ is said to be an extreme face if it has proper vertices (i.e. such vertices which do not belong to any other maximal face of ${\mathfrak{K}}$). If $T$ is an extreme face of ${\mathfrak{K}}$ the complex ${\mathfrak{K}}^*$ obtained by removing from ${\mathfrak{K}}$ all proper vertices of $T$ with their stars is said to be a normal subcomplex of ${\mathfrak{K}}$. A complex ${\mathfrak{K}} $ is said to be regular if there is a sequence $${\mathfrak{K}}={\mathfrak{K}}_0\supset {\mathfrak{K}}_1\supset \cdots\supset{\mathfrak{K}}_n$$ of subcomplexes of ${\mathfrak{K}}$ where ${\mathfrak{K}}_i$ is a normal subcomplex of ${\mathfrak{K}}_{i-1},i=1,\dots,n$, and the last member vanishes. The main results of the paper consists in the following statement. Theorem. The regularity of the complex ${\mathfrak{K}}$ is a necessary and sufficient condition of extendability of any consistent family of $\mu_{\mathfrak{K}}$ of measures.
@article{TVP_1962_7_2_a2,
     author = {N. N. Vorob'ev},
     title = {Consistent {Families} of {Measures} and {Their} {Extensions}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {153--169},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {1962},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1962_7_2_a2/}
}
TY  - JOUR
AU  - N. N. Vorob'ev
TI  - Consistent Families of Measures and Their Extensions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1962
SP  - 153
EP  - 169
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1962_7_2_a2/
LA  - ru
ID  - TVP_1962_7_2_a2
ER  - 
%0 Journal Article
%A N. N. Vorob'ev
%T Consistent Families of Measures and Their Extensions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1962
%P 153-169
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1962_7_2_a2/
%G ru
%F TVP_1962_7_2_a2
N. N. Vorob'ev. Consistent Families of Measures and Their Extensions. Teoriâ veroâtnostej i ee primeneniâ, Tome 7 (1962) no. 2, pp. 153-169. http://geodesic.mathdoc.fr/item/TVP_1962_7_2_a2/