Minimax Theorems for Games with Imperfect Transfer of Information
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 7 (1962) no. 1, pp. 89-95
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Zero-sum two-person positional (i.e. extensive) games are considered. The players obtain random communication about their opponents’ moves; the distributions depend on these moves.
The proofs of these minimax theorems are based on Wald’s idea ([1], Ch. 2) of replacing an infinite game by a similar finite one.
			
            
            
            
          
        
      @article{TVP_1962_7_1_a6,
     author = {J. V. Romanovsky},
     title = {Minimax {Theorems} for {Games} with {Imperfect} {Transfer} of {Information}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {89--95},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {1962},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1962_7_1_a6/}
}
                      
                      
                    J. V. Romanovsky. Minimax Theorems for Games with Imperfect Transfer of Information. Teoriâ veroâtnostej i ee primeneniâ, Tome 7 (1962) no. 1, pp. 89-95. http://geodesic.mathdoc.fr/item/TVP_1962_7_1_a6/
