A Central Limit Theorem for Additive Random Functions
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 2, pp. 243-246
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper the additive random functions ${\text{H}}(\Delta )$ of the semi-interval $\Delta=[s,t)$, satisfying the strong mixing condition (1), are considered.
Let in formula (1) the variable $\alpha(\tau)= O[\tau^{-1-\varepsilon}]$ and $\mathbf M|\mathrm H(\Delta_0)-\mathbf M\mathrm H(\Delta_0)|^{2+\delta}\leq M_0,\delta>2/\varepsilon$ for all $\Delta_0=[t_0,t+t_0)$, then, assuming condition (4), $$\mathbf P\biggl\{\frac{\mathrm H(\Delta)-\mathbf M\mathrm H(\Delta)}{\sqrt{\mathbf D\mathrm H(\Delta)}} x\biggr\}\to\frac1{\sqrt {2\pi}}\int_{-\infty}^x{e^{-u^2/2}}\,du$$ when $|\Delta|=t-s\to \infty$.
			
            
            
            
          
        
      @article{TVP_1960_5_2_a8,
     author = {Yu. A. Rozanov},
     title = {A {Central} {Limit} {Theorem} for {Additive} {Random} {Functions}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {243--246},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {1960},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1960_5_2_a8/}
}
                      
                      
                    Yu. A. Rozanov. A Central Limit Theorem for Additive Random Functions. Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 2, pp. 243-246. http://geodesic.mathdoc.fr/item/TVP_1960_5_2_a8/
