A Central Limit Theorem for Additive Random Functions
Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 2, pp. 243-246

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the additive random functions ${\text{H}}(\Delta )$ of the semi-interval $\Delta=[s,t)$, satisfying the strong mixing condition (1), are considered. Let in formula (1) the variable $\alpha(\tau)= O[\tau^{-1-\varepsilon}]$ and $\mathbf M|\mathrm H(\Delta_0)-\mathbf M\mathrm H(\Delta_0)|^{2+\delta}\leq M_0,\delta>2/\varepsilon$ for all $\Delta_0=[t_0,t+t_0)$, then, assuming condition (4), $$\mathbf P\biggl\{\frac{\mathrm H(\Delta)-\mathbf M\mathrm H(\Delta)}{\sqrt{\mathbf D\mathrm H(\Delta)}} x\biggr\}\to\frac1{\sqrt {2\pi}}\int_{-\infty}^x{e^{-u^2/2}}\,du$$ when $|\Delta|=t-s\to \infty$.
@article{TVP_1960_5_2_a8,
     author = {Yu. A. Rozanov},
     title = {A {Central} {Limit} {Theorem} for {Additive} {Random} {Functions}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {243--246},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {1960},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1960_5_2_a8/}
}
TY  - JOUR
AU  - Yu. A. Rozanov
TI  - A Central Limit Theorem for Additive Random Functions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1960
SP  - 243
EP  - 246
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1960_5_2_a8/
LA  - ru
ID  - TVP_1960_5_2_a8
ER  - 
%0 Journal Article
%A Yu. A. Rozanov
%T A Central Limit Theorem for Additive Random Functions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1960
%P 243-246
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1960_5_2_a8/
%G ru
%F TVP_1960_5_2_a8
Yu. A. Rozanov. A Central Limit Theorem for Additive Random Functions. Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 2, pp. 243-246. http://geodesic.mathdoc.fr/item/TVP_1960_5_2_a8/