A Central Limit Theorem for Additive Random Functions
Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 2, pp. 243-246
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper the additive random functions ${\text{H}}(\Delta )$ of the semi-interval $\Delta=[s,t)$, satisfying the strong mixing condition (1), are considered. Let in formula (1) the variable $\alpha(\tau)= O[\tau^{-1-\varepsilon}]$ and $\mathbf M|\mathrm H(\Delta_0)-\mathbf M\mathrm H(\Delta_0)|^{2+\delta}\leq M_0,\delta>2/\varepsilon$ for all $\Delta_0=[t_0,t+t_0)$, then, assuming condition (4), $$\mathbf P\biggl\{\frac{\mathrm H(\Delta)-\mathbf M\mathrm H(\Delta)}{\sqrt{\mathbf D\mathrm H(\Delta)}}< x\biggr\}\to\frac1{\sqrt {2\pi}}\int_{-\infty}^x{e^{-u^2/2}}\,du$$ when $|\Delta|=t-s\to \infty$.
@article{TVP_1960_5_2_a8,
author = {Yu. A. Rozanov},
title = {A {Central} {Limit} {Theorem} for {Additive} {Random} {Functions}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {243--246},
year = {1960},
volume = {5},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1960_5_2_a8/}
}
Yu. A. Rozanov. A Central Limit Theorem for Additive Random Functions. Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 2, pp. 243-246. http://geodesic.mathdoc.fr/item/TVP_1960_5_2_a8/