Criteria for Coordinate-Homogeneity for Continuous Markov Processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 2, pp. 229-237
Cet article a éte moissonné depuis la source Math-Net.Ru
Let us consider a Markov process with an infinitesimal operator \begin{equation} A_t=A^i(t,x)\frac{\partial}{\partial x^i } +B^{ij}(t,x)\frac{\partial^2}{\partial x^i\partial x^j} \label{eq*} \tag{*} \end{equation} where $x=(x^1,\dots,x^n )$ is a point in Riemann space $V_n$ with a metric $g_{ij}(t,x)$. The necessary and sufficient conditions for the existence of transformation $x^{i'}=x^{i'}(t,x^1,\dots,x^n)$ which transforms the operator \eqref{eq*} into the well-known operator $$A_t^0=B^{i'j'}(t)\frac{\partial^2}{\partial x^{i'} \partial x^{j'}}$$ are given. At the end of the paper an example is, given from statistics, in which these conditions are applied for establishing the density of the probabilities $f(t,x,\tau,\xi)$ of a certain Markov process.
@article{TVP_1960_5_2_a6,
author = {I. D. Cherkasov},
title = {Criteria for {Coordinate-Homogeneity} for {Continuous} {Markov} {Processes}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {229--237},
year = {1960},
volume = {5},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1960_5_2_a6/}
}
I. D. Cherkasov. Criteria for Coordinate-Homogeneity for Continuous Markov Processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 2, pp. 229-237. http://geodesic.mathdoc.fr/item/TVP_1960_5_2_a6/