Criteria for Coordinate-Homogeneity for Continuous Markov Processes
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 2, pp. 229-237
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let us consider a Markov process with an infinitesimal operator 
\begin{equation}
A_t=A^i(t,x)\frac{\partial}{\partial x^i } +B^{ij}(t,x)\frac{\partial^2}{\partial x^i\partial x^j}
\label{eq*}
\tag{*}
\end{equation} 
where $x=(x^1,\dots,x^n )$ is a point in Riemann space $V_n$ with a metric $g_{ij}(t,x)$.
The necessary and sufficient conditions for the existence of transformation $x^{i'}=x^{i'}(t,x^1,\dots,x^n)$ which transforms the operator \eqref{eq*} into the well-known operator $$A_t^0=B^{i'j'}(t)\frac{\partial^2}{\partial x^{i'} \partial x^{j'}}$$ are given.
At the end of the paper an example is, given from statistics, in which these conditions are applied for establishing the density of the probabilities $f(t,x,\tau,\xi)$ of a certain Markov process.
			
            
            
            
          
        
      @article{TVP_1960_5_2_a6,
     author = {I. D. Cherkasov},
     title = {Criteria for {Coordinate-Homogeneity} for {Continuous} {Markov} {Processes}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {229--237},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {1960},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1960_5_2_a6/}
}
                      
                      
                    I. D. Cherkasov. Criteria for Coordinate-Homogeneity for Continuous Markov Processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 2, pp. 229-237. http://geodesic.mathdoc.fr/item/TVP_1960_5_2_a6/
