On Approximation of a Multinomial Distribution by Infinitely Divisible Laws
Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 1, pp. 114-124

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $F_p^n(x)$ be an $(n,p)$ binomial distribution function, $\mathfrak{G}$ a set of all infinitely divisible laws and $$\rho(F_p^n,\mathfrak G)=\inf\limits_{G\in\mathfrak G}\sup\limits_x\left|F_p^n(x)-G(x)\right|.$$ Then, a) $\sup\limits_{0\leq p\leq1}\rho_1(F_p^n,\mathfrak G)$, b) $\rho_1(F^n_{n^{-2/3}},\mathfrak G_1^M(n^{1/3}))>C(M)n^{-2/3}(\lg n)^{-1/4}$, where $C_0$ is an absolute constant $C(M)>0$ depends on $M$ only, and $$\mathfrak G_1^M(a)=\biggl\{G:G\in\mathfrak G;\int_{-\infty}^\infty e^{itx}\,dG(x)=\exp\biggl[i\gamma t+\sum_{|k|}(e^{itk}-1)q_k\biggr]\\\int_{-\infty}^\infty x\,dG(x)=a,\quad q_k\geq0,k=0,\pm1\dots.\biggr\}.$$ The result a) is generalized for the case of a multinomial distribution.
@article{TVP_1960_5_1_a8,
     author = {L. D. Meshalkin},
     title = {On {Approximation} of a {Multinomial} {Distribution} by {Infinitely} {Divisible} {Laws}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {114--124},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {1960},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1960_5_1_a8/}
}
TY  - JOUR
AU  - L. D. Meshalkin
TI  - On Approximation of a Multinomial Distribution by Infinitely Divisible Laws
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1960
SP  - 114
EP  - 124
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1960_5_1_a8/
LA  - ru
ID  - TVP_1960_5_1_a8
ER  - 
%0 Journal Article
%A L. D. Meshalkin
%T On Approximation of a Multinomial Distribution by Infinitely Divisible Laws
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1960
%P 114-124
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1960_5_1_a8/
%G ru
%F TVP_1960_5_1_a8
L. D. Meshalkin. On Approximation of a Multinomial Distribution by Infinitely Divisible Laws. Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 1, pp. 114-124. http://geodesic.mathdoc.fr/item/TVP_1960_5_1_a8/