On Approximation of a Multinomial Distribution by Infinitely Divisible Laws
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 1, pp. 114-124
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $F_p^n(x)$ be an $(n,p)$ binomial distribution function, $\mathfrak{G}$ a set of all infinitely divisible laws and $$\rho(F_p^n,\mathfrak G)=\inf\limits_{G\in\mathfrak G}\sup\limits_x\left|F_p^n(x)-G(x)\right|.$$ Then, 
a) $\sup\limits_{0\leq p\leq1}\rho_1(F_p^n,\mathfrak G)$, 
b) $\rho_1(F^n_{n^{-2/3}},\mathfrak G_1^M(n^{1/3}))>C(M)n^{-2/3}(\lg n)^{-1/4}$, where $C_0$ is an absolute constant $C(M)>0$ depends on $M$ only, and $$\mathfrak G_1^M(a)=\biggl\{G:G\in\mathfrak G;\int_{-\infty}^\infty e^{itx}\,dG(x)=\exp\biggl[i\gamma t+\sum_{|k|}(e^{itk}-1)q_k\biggr]\\\int_{-\infty}^\infty x\,dG(x)=a,\quad q_k\geq0,k=0,\pm1\dots.\biggr\}.$$
The result a) is generalized for the case of a multinomial distribution.
			
            
            
            
          
        
      @article{TVP_1960_5_1_a8,
     author = {L. D. Meshalkin},
     title = {On {Approximation} of a {Multinomial} {Distribution} by {Infinitely} {Divisible} {Laws}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {114--124},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {1960},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1960_5_1_a8/}
}
                      
                      
                    L. D. Meshalkin. On Approximation of a Multinomial Distribution by Infinitely Divisible Laws. Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 1, pp. 114-124. http://geodesic.mathdoc.fr/item/TVP_1960_5_1_a8/
