Properties of Sample Functions of a Stationary Gaussian Process
Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 1, pp. 132-134

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{\xi_t(\omega),-\infty$ be a separable stationary Gaussian process with a continuous correlation function. Then, the following alternative holds true: 1) either for almost all w the sample functions of the process $\xi_t(\omega)$ are continuous functions of $t$. 2) or there exists a $\beta>0$ such that for almost all $\omega$ the sample function $\xi_t(\omega)$ is such that $$\varlimsup_{t\to t_0}\xi_t(\omega)-\varliminf_{t\to t_0}\xi_t(\omega)\geq\beta$$ for any $t_0$. In the second case almost all sample functions have no points of first order discontinuities.
@article{TVP_1960_5_1_a11,
     author = {R. L. Dobrushin},
     title = {Properties of {Sample} {Functions} of a {Stationary} {Gaussian} {Process}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {132--134},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {1960},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1960_5_1_a11/}
}
TY  - JOUR
AU  - R. L. Dobrushin
TI  - Properties of Sample Functions of a Stationary Gaussian Process
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1960
SP  - 132
EP  - 134
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1960_5_1_a11/
LA  - ru
ID  - TVP_1960_5_1_a11
ER  - 
%0 Journal Article
%A R. L. Dobrushin
%T Properties of Sample Functions of a Stationary Gaussian Process
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1960
%P 132-134
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1960_5_1_a11/
%G ru
%F TVP_1960_5_1_a11
R. L. Dobrushin. Properties of Sample Functions of a Stationary Gaussian Process. Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 1, pp. 132-134. http://geodesic.mathdoc.fr/item/TVP_1960_5_1_a11/