Properties of Sample Functions of a Stationary Gaussian Process
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 1, pp. 132-134
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $\{\xi_t(\omega),-\infty$ be a separable stationary Gaussian process with a continuous correlation function. Then, the following alternative holds true:
1) either for almost all w the sample functions of the process $\xi_t(\omega)$ are continuous functions of $t$.
2) or there exists a $\beta>0$ such that for almost all $\omega$ the sample function $\xi_t(\omega)$ is such that 
$$\varlimsup_{t\to t_0}\xi_t(\omega)-\varliminf_{t\to t_0}\xi_t(\omega)\geq\beta$$ for any $t_0$.
In the second case almost all sample functions have no points of first order discontinuities.
			
            
            
            
          
        
      @article{TVP_1960_5_1_a11,
     author = {R. L. Dobrushin},
     title = {Properties of {Sample} {Functions} of a {Stationary} {Gaussian} {Process}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {132--134},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {1960},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1960_5_1_a11/}
}
                      
                      
                    R. L. Dobrushin. Properties of Sample Functions of a Stationary Gaussian Process. Teoriâ veroâtnostej i ee primeneniâ, Tome 5 (1960) no. 1, pp. 132-134. http://geodesic.mathdoc.fr/item/TVP_1960_5_1_a11/
