On the Maximum Partial Sums of Sequences of Independent Random Variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 4 (1959) no. 4, pp. 398-404

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work the results of K. L. Chung [2] concerning the maximum partial sums of sequences of independent random variables are obtained for a weaker condition. The method employed in the proof is analogous to the one used by Chung with the difference that, instead of Esseen’s approximations involving third moments, we use Berry’s approximations involving only second moments.
@article{TVP_1959_4_4_a1,
     author = {R. P. Pakshirajan},
     title = {On the {Maximum} {Partial} {Sums} of {Sequences} of {Independent} {Random} {Variables}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {398--404},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {1959},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1959_4_4_a1/}
}
TY  - JOUR
AU  - R. P. Pakshirajan
TI  - On the Maximum Partial Sums of Sequences of Independent Random Variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1959
SP  - 398
EP  - 404
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1959_4_4_a1/
LA  - en
ID  - TVP_1959_4_4_a1
ER  - 
%0 Journal Article
%A R. P. Pakshirajan
%T On the Maximum Partial Sums of Sequences of Independent Random Variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1959
%P 398-404
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1959_4_4_a1/
%G en
%F TVP_1959_4_4_a1
R. P. Pakshirajan. On the Maximum Partial Sums of Sequences of Independent Random Variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 4 (1959) no. 4, pp. 398-404. http://geodesic.mathdoc.fr/item/TVP_1959_4_4_a1/