Limit Theorems for Markov Chains with a Finite Number of States
Teoriâ veroâtnostej i ee primeneniâ, Tome 3 (1958) no. 4, pp. 361-385
Voir la notice de l'article provenant de la source Math-Net.Ru
Consider the scheme of trial sequences $$\nu _{11}\\ \nu_{21},\nu_{22}\\\dots\\\nu_{n1},\nu_{n2},\dots,\nu_{nn}\\\dots\dots\dots\\$$ The sequence $\nu_{nk}$, $k=1,\dots,n$, is a uniform Markov chain with a finite number of states $E_1,\dots,E_s$ and a given matrix of transition probabilities $$P=P(n)=\left\|{p_{uv}(n)}\right\|_{u,v=1}^s.$$ Let $\mu=\mu (n)$ denote the number of passages up in the $n$-th sequence of trials of the system through $E_1$ on condition that the system is in state $E_1$ at the initial (or zero-th) time. We consider the limit distribution for a sequence of random variables $$ \alpha(\mu-n\theta),\quad\alpha=\alpha(n),\quad\theta=\theta(n).$$ Theorems 1–5 give characteristic functions for some possible limit distributions.
The main result of this paper is Theorem 6:
If the limit distribution for $\alpha(\mu-n\theta)$ exists, then it does not differ from one of those found in Theorems
1–5 by more than a linear transformation.
@article{TVP_1958_3_4_a0,
author = {L. D. Meshalkin},
title = {Limit {Theorems} for {Markov} {Chains} with a {Finite} {Number} of {States}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {361--385},
publisher = {mathdoc},
volume = {3},
number = {4},
year = {1958},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1958_3_4_a0/}
}
L. D. Meshalkin. Limit Theorems for Markov Chains with a Finite Number of States. Teoriâ veroâtnostej i ee primeneniâ, Tome 3 (1958) no. 4, pp. 361-385. http://geodesic.mathdoc.fr/item/TVP_1958_3_4_a0/