Non-Linear Confluence Analysis
Teoriâ veroâtnostej i ee primeneniâ, Tome 2 (1957) no. 4, pp. 473-475

Voir la notice de l'article provenant de la source Math-Net.Ru

Non-linear confluence analysis, necessary for the treatment of experimental data when all variables are subject to errors, is considered from the standpoint of the maximum likelihood method. The likelihood function is a product of curvilinear integrals of the respective distribution densities of each point of the curve. For a sufficiently small curvature and a normal error distribution, these integrals are evaluated approximately, resulting in distribution functions of the normal type but with modified weights and shifted experimental points. Thus, a confluent problem is reduced to an ordinary regressional one. Weight modifications and point shifts may be found by means of successive approximations.
@article{TVP_1957_2_4_a4,
     author = {N. P. Klepikov and S. N. Sokolov},
     title = {Non-Linear {Confluence} {Analysis}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {473--475},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {1957},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1957_2_4_a4/}
}
TY  - JOUR
AU  - N. P. Klepikov
AU  - S. N. Sokolov
TI  - Non-Linear Confluence Analysis
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1957
SP  - 473
EP  - 475
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1957_2_4_a4/
LA  - ru
ID  - TVP_1957_2_4_a4
ER  - 
%0 Journal Article
%A N. P. Klepikov
%A S. N. Sokolov
%T Non-Linear Confluence Analysis
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1957
%P 473-475
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1957_2_4_a4/
%G ru
%F TVP_1957_2_4_a4
N. P. Klepikov; S. N. Sokolov. Non-Linear Confluence Analysis. Teoriâ veroâtnostej i ee primeneniâ, Tome 2 (1957) no. 4, pp. 473-475. http://geodesic.mathdoc.fr/item/TVP_1957_2_4_a4/