On the Decomposition of the Convolution of Gaussian and Poissonian Laws
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 2 (1957) no. 1, pp. 34-59
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The paper contains a detailed proof for the following theorem: the convolution of a Gaussian and a Poissonian law can be decomposed only into similar convolutions. More precisely, let $X=X_1+X_2$, where $X_1$ is a Gaussian component and $X_2$ a Poissonian component independent of $X_1$. If there is some other decomposition: 
$X=Y_1+Y_2,Y_1$ being independent of $Y_2$, then $$Y_1=Y_{11}+Y_{12},\\Y_2=Y_{21}+Y_{22}.$$ where 
$Y_{11},Y_{21}$ are Gaussian and $Y_{12},Y_{22}$ Poissonian, all mutually independent, and 
$$\mathbf D\left(Y_{11}\right)+\mathbf D\left(Y_{21}\right)=\mathbf D\left(X_1\right),\\\mathbf D\left(Y_{12}\right)+\mathbf D\left(Y_{22}\right)=\mathbf D\left(X_2\right).\\$$
Thus, H. Cramer's theorem on decomposing the normal law, and D. A. Raykov's theorem on decomposing the Poissonian law are special cases of this theorem.
			
            
            
            
          
        
      @article{TVP_1957_2_1_a1,
     author = {Yu. V. Linnik},
     title = {On the {Decomposition} of the {Convolution} of {Gaussian} and {Poissonian} {Laws}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {34--59},
     publisher = {mathdoc},
     volume = {2},
     number = {1},
     year = {1957},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1957_2_1_a1/}
}
                      
                      
                    Yu. V. Linnik. On the Decomposition of the Convolution of Gaussian and Poissonian Laws. Teoriâ veroâtnostej i ee primeneniâ, Tome 2 (1957) no. 1, pp. 34-59. http://geodesic.mathdoc.fr/item/TVP_1957_2_1_a1/
