Determining the probability distribution by a statistics distribution
Teoriâ veroâtnostej i ee primeneniâ, Tome 1 (1956) no. 4, pp. 466-478

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a real random variable with the distribution function $F(x)=\mathbf P(X$ and $\vec{\xi}=(x_1,\dots,x_n)$ the corresponding sample of size $n$ ($x_i$ being independent replicas of $X$). A statistic $Q(\vec{\xi})$ is called definite if it is homogeneous of positive dimension and the level surfaces $Q(\vec{\xi})=\operatorname{const}$ are continuous, piecewise-smooth and star-finite regions. A statistic $Q(\vec{\xi})$ is called defining in a class $K$ of distribution functions $F(x)$, if the distribution $F_Q(x)=\mathbf P(Q$, induced by $F(x)$, determines $F(x)$ in the class $K$. A definite statistic cannot be defining in general for the class $K$ of all distribution functions, but it is defining in certain rather wide classes of symmetric distribution densities. Three theorems are proved to this effect. The problem can be given as a generalization of the classical moment problem, putting $Q(\vec{\xi})=x_1^2+\cdots+x_n^2 $.
@article{TVP_1956_1_4_a3,
     author = {Yu. V. Linnik},
     title = {Determining the probability distribution by a statistics distribution},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {466--478},
     publisher = {mathdoc},
     volume = {1},
     number = {4},
     year = {1956},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1956_1_4_a3/}
}
TY  - JOUR
AU  - Yu. V. Linnik
TI  - Determining the probability distribution by a statistics distribution
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1956
SP  - 466
EP  - 478
VL  - 1
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1956_1_4_a3/
LA  - ru
ID  - TVP_1956_1_4_a3
ER  - 
%0 Journal Article
%A Yu. V. Linnik
%T Determining the probability distribution by a statistics distribution
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1956
%P 466-478
%V 1
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1956_1_4_a3/
%G ru
%F TVP_1956_1_4_a3
Yu. V. Linnik. Determining the probability distribution by a statistics distribution. Teoriâ veroâtnostej i ee primeneniâ, Tome 1 (1956) no. 4, pp. 466-478. http://geodesic.mathdoc.fr/item/TVP_1956_1_4_a3/