Determining the probability distribution by a statistics distribution
Teoriâ veroâtnostej i ee primeneniâ, Tome 1 (1956) no. 4, pp. 466-478
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X$ be a real random variable with the distribution function $F(x)=\mathbf P(X$ and $\vec{\xi}=(x_1,\dots,x_n)$ the corresponding sample of size $n$ ($x_i$ being independent replicas of $X$).
A statistic $Q(\vec{\xi})$ is called definite if it is homogeneous of positive dimension and the level surfaces $Q(\vec{\xi})=\operatorname{const}$ are continuous, piecewise-smooth and star-finite regions. A statistic $Q(\vec{\xi})$ is called defining in a class $K$ of distribution functions $F(x)$, if the distribution $F_Q(x)=\mathbf P(Q$, induced by $F(x)$, determines $F(x)$ in the class $K$. A definite statistic cannot be defining in general for the class $K$ of all distribution functions, but it is defining in certain rather wide classes of symmetric distribution densities. Three theorems are proved to this effect. The problem can be given as a generalization of the classical moment problem, putting $Q(\vec{\xi})=x_1^2+\cdots+x_n^2 $.
@article{TVP_1956_1_4_a3,
author = {Yu. V. Linnik},
title = {Determining the probability distribution by a statistics distribution},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {466--478},
publisher = {mathdoc},
volume = {1},
number = {4},
year = {1956},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1956_1_4_a3/}
}
Yu. V. Linnik. Determining the probability distribution by a statistics distribution. Teoriâ veroâtnostej i ee primeneniâ, Tome 1 (1956) no. 4, pp. 466-478. http://geodesic.mathdoc.fr/item/TVP_1956_1_4_a3/