Model problem on normal oscillations of partially dissipative hydrosystem
Taurida Journal of Computer Science Theory and Mathematics, no. 4 (2020), pp. 83-98

Voir la notice de l'article provenant de la source Math-Net.Ru

Let us consider the plain (two-dimensional) problem for two fluids situated in the rectangular container of a width $l$. We suppose that the lower viscous fluid takes the region $ \Omega_1:=\{\, (x_1;x_2)\, : \, 0$ and the upper ideal fluid takes the region $ \Omega_2:=\{\, (x_1;x_2)\, : \, 0$ The boundary $\Gamma_1$ has the equation $x_2=0$, and the free surface $\Gamma_2$ of the ideal fluid has the equation $x_2=h_2$. Suppose that the homogeneous gravitational field with the acceleration $\vec g = -g \vec e_2$ acts on the fluid system opposite to the direction of the axis $Ox_2$ and capillary forces. Further, two cases will be considered: 1) fluids are considered to be heavy and capillary forces are not taken into account; 2) fluids are considered to be capillary, that is, being in a state close to weightlessness. In the second case the coefficients of surface tension $\sigma_i>0$ on the fluid boundaries $\Gamma_i$ are know physical constants, and the wetting angles (contact angles) between surfaces $\Gamma_i$ and the rigid wall $S$ of the vessel are right angles. In this paper, we consider a model spectral problem that preserves all the features of the original problem of normal oscillations of the hydrodynamic system described above. A qualitative and asymptotic investigation of the spectrum of the problem is carried out the base of a study of the transcendent characteristic equation for the complex fading decrement of normal oscillations.
Keywords: model problem, ideal fluid, characteristic equation, spectrum of hydrodynamic problem.
Mots-clés : viscous fluid
@article{TVIM_2020_4_a4,
     author = {N. D. Kopachevskii and U. B. Bryksina and D. O. Tsvetkov},
     title = {Model problem on normal oscillations of partially dissipative hydrosystem},
     journal = {Taurida Journal of Computer Science Theory and Mathematics},
     pages = {83--98},
     publisher = {mathdoc},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVIM_2020_4_a4/}
}
TY  - JOUR
AU  - N. D. Kopachevskii
AU  - U. B. Bryksina
AU  - D. O. Tsvetkov
TI  - Model problem on normal oscillations of partially dissipative hydrosystem
JO  - Taurida Journal of Computer Science Theory and Mathematics
PY  - 2020
SP  - 83
EP  - 98
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVIM_2020_4_a4/
LA  - ru
ID  - TVIM_2020_4_a4
ER  - 
%0 Journal Article
%A N. D. Kopachevskii
%A U. B. Bryksina
%A D. O. Tsvetkov
%T Model problem on normal oscillations of partially dissipative hydrosystem
%J Taurida Journal of Computer Science Theory and Mathematics
%D 2020
%P 83-98
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVIM_2020_4_a4/
%G ru
%F TVIM_2020_4_a4
N. D. Kopachevskii; U. B. Bryksina; D. O. Tsvetkov. Model problem on normal oscillations of partially dissipative hydrosystem. Taurida Journal of Computer Science Theory and Mathematics, no. 4 (2020), pp. 83-98. http://geodesic.mathdoc.fr/item/TVIM_2020_4_a4/