Problem on oscillation of a body partially filled with an ideal fluid under the action of an elastic and damping forces
Taurida Journal of Computer Science Theory and Mathematics, no. 3 (2020), pp. 92-108

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study a problem of small motions of a body partially filled with an ideal homogenous fluid under the action of an elastic damping device. The mathematical statement of the problem consists of the equation of motion of a body with an ideal fluid in a stationary coordinate system \begin{equation*} m\ddot{x}e_1 + \rho\int\limits_{\Omega}\frac{\partial u}{\partial t} \, d\Omega + (k_0^2+ k_1^2) x e_1 + \alpha \dot{x}e_1 = k_0^2x_0 e_1+ k_1^2 x_1 e_1+ f_{\text{т}} + N(t)e_2 - g m e_2, \end{equation*} the equations of motion of a fluid in a moving coordinate system rigidly connected with the body \begin{equation*} \rho\left(\frac{\partial u}{\partial t} + \ddot{x} e_1^{\, (1)}\right) + \nabla p = \rho f_{\text{ж}}, \quad\quad div\, u =0 \; ({\rm in} \,\, \Omega), \end{equation*} the boundary conditions \begin{equation*} \begin{split} u_n = u \cdot n= 0 \; ({\rm on} \,\, S),\quad p=\rho g\zeta \; ({\rm on} \,\, \Gamma), \quad \frac{\partial\zeta}{\partial t} = u \cdot e_2^{\, (1)} \; ({\rm on} \,\, \Gamma), \quad \int\limits_{\Gamma} \zeta\, d\Gamma = 0, \end{split} \end{equation*} and the initial conditions \begin{equation*} x(0)=x^0, \quad \dot{x}(0) = x^1,\quad u(0,x^{\, (1)}) = u^{\,0} (x^{\, (1)}), \quad \zeta (0,x_1^{\, (1)})=\zeta^0. \end{equation*} For given initial-boundary value problem we obtain the law of full energy balance in the differential form. Theorem. If the problem has a classical solution, i.e. all functions in the equations, the boundary and initial conditions are continuous. Then the following equation is valid \begin{align*} \nonumber\frac{1}{2}\frac{d}{dt}\bigg\{ m_{T} (\dot{x})^{\, 2} + \rho \int\limits_{\Omega} \big| u + \dot{x} e_1^{\, (1)}\big|^2 \, d\Omega + (k_0^2+k_1^2) x^2 + \rho g \int\limits_{\Gamma}|\zeta|^2 d\Gamma\bigg\} =\\ = -\alpha \dot{x}^{\, 2} + (f_{\text{т}} \cdot e_1)\dot{x} + \rho \int\limits_{\Omega} f_{\text{ж}}\cdot u \, d\Omega + k_0^2 x_0 \dot{x} + k_1^2 x_1 \dot{x}. \end{align*} It is the law of full energy balance of the considered hydromechanical system. Using necessary Hilbert spaces and subspaces we apply the method of orthogonal projection to the equation of fluid motion. Then problem can be formulated as a Cauchy problem for a first-order differential-operator equation in the orthogonal sum of Hilbert spaces. We study the properties of operator matrices and prove the theorem on existence of a unique strong solution of the final operator equation and initial boundary value problem. The main result of this work is the following theorem. Theorem. Initial boundary value problem has a unique strong solution whenever \begin{align*} P_{h, S} u^0 \in \mathcal{D}(\gamma_n), \quad \zeta^0 \in \mathcal{D}(Q)=H^{1/2}_\Gamma, \\ f_{T} \in C^1 \big(\mathbb{R}_+; \mathbb{C}^2\big),\quad f_{\text{ж}} \in C^1 \big(\mathbb{R}_+; L_2(\Omega)\big). \end{align*}
Keywords: ideal fluid, elastic and damping forces, strong solvability, Cauchy problem.
@article{TVIM_2020_3_a5,
     author = {K. V. Forduk},
     title = {Problem on oscillation of a body partially filled with an ideal fluid under the action of an elastic and damping forces},
     journal = {Taurida Journal of Computer Science Theory and Mathematics},
     pages = {92--108},
     publisher = {mathdoc},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVIM_2020_3_a5/}
}
TY  - JOUR
AU  - K. V. Forduk
TI  - Problem on oscillation of a body partially filled with an ideal fluid under the action of an elastic and damping forces
JO  - Taurida Journal of Computer Science Theory and Mathematics
PY  - 2020
SP  - 92
EP  - 108
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVIM_2020_3_a5/
LA  - ru
ID  - TVIM_2020_3_a5
ER  - 
%0 Journal Article
%A K. V. Forduk
%T Problem on oscillation of a body partially filled with an ideal fluid under the action of an elastic and damping forces
%J Taurida Journal of Computer Science Theory and Mathematics
%D 2020
%P 92-108
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVIM_2020_3_a5/
%G ru
%F TVIM_2020_3_a5
K. V. Forduk. Problem on oscillation of a body partially filled with an ideal fluid under the action of an elastic and damping forces. Taurida Journal of Computer Science Theory and Mathematics, no. 3 (2020), pp. 92-108. http://geodesic.mathdoc.fr/item/TVIM_2020_3_a5/