Embedding theorems for symmetric spaces of measurable functions
Taurida Journal of Computer Science Theory and Mathematics, no. 1 (2018), pp. 67-88
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $m$ be the usual Lebesgue measure on $\mathbb{R}_+ = [0,+\infty)$.
Dealing with symmetric (rearrangement invariant) spaces
$\mathbf{E}$ on the standard measure space $(\mathbb{R}_+,m)$, we
treat the following embeddings:
$$
\mathbf{L}_1\cap\mathbf{L}_\infty \subseteq \mathbf{\Lambda}^0_{\widetilde{V}}\subseteq \mathbf{E}^0\subseteq \mathbf{E}\subseteq \mathbf{E}^{11}\subseteq \mathbf{M}_{V_*} \subseteq \mathbf{L}_1+\mathbf{L}_\infty \;,
$$
where $\mathbf{E}^0= cl_\mathbf{E}(\mathbf{L}_1\cap\mathbf{L}_\infty)$ is the closure of $\mathbf{L}_1\cap\mathbf{L}_\infty$ in $\mathbf{E}$, $\mathbf{E}^{11}=(\mathbf{E}^1)^1$ is the second associate space of $\mathbf{E}$, $V(x)= \|1_{[0,x]}\|_\mathbf{E}$ is the fundamental function of the symmetric space $\mathbf{E}$, $\displaystyle{V_*(x)= \frac{x}{V(x)}1_{(0,\infty)}(x)}$, $\widetilde{V}$ is the least concave majorant of $V$, $\mathbf{\Lambda}_{\widetilde{V}} $ and $ \mathbf{M}_{V_*}$ are the Lorentz and Marcinkiewicz
spaces with the weights $\widetilde{V}$ and $V_*$ respectively,
$\mathbf{\Lambda}^0_{\widetilde{V}}=cl_{\mathbf{\Lambda}_{\widetilde{V}}}(\mathbf{L}_1\cap\mathbf{L}_\infty)$.
The space $\mathbf{\Lambda}^0_{\widetilde{V}}$ is the minimal part of the Lorentz space $\mathbf{\Lambda}_{\widetilde{V}}$.
It is the smallest symmetric space on $\mathbb{R}_+$ whose fundamental function $\varphi_{\mathbf{\Lambda}^0_{\widetilde{V}}}=\widetilde{V}$ is equivalent to $V$.
The Marcinkiewicz space $\mathbf{M}_{V_*}$ is the largest symmetric space on $\mathbb{R}_+$ satisfying $\varphi_{\mathbf{M}_{V_*}}= \varphi_{\mathbf{E}} = V $.
The inclusion $\mathbf{\Lambda}_{\widetilde{V}}\subseteq \mathbf{E}$ claimed in [3, II.5.4, Th. 5.5] fails in general.
Although, it is true, for example, if $V(+\infty) = \infty$ (the space $\mathbf{\Lambda}^0_{\widetilde{V}}$ is
minimal), or if the space $\mathbf{E}$ itself is maximal ($\mathbf{E}=\mathbf{E}^{11}$).
The embeddings and natural inequalities for corresponding norms are studied in detail.
Keywords:
Symmetric spaces, Lorentz and Marcinkiewicz spaces, embedding theorems.
@article{TVIM_2018_1_a5,
author = {M. A. Muratov and B. A. Rubshtein},
title = {Embedding theorems for symmetric spaces of measurable functions},
journal = {Taurida Journal of Computer Science Theory and Mathematics},
pages = {67--88},
publisher = {mathdoc},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVIM_2018_1_a5/}
}
TY - JOUR AU - M. A. Muratov AU - B. A. Rubshtein TI - Embedding theorems for symmetric spaces of measurable functions JO - Taurida Journal of Computer Science Theory and Mathematics PY - 2018 SP - 67 EP - 88 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVIM_2018_1_a5/ LA - ru ID - TVIM_2018_1_a5 ER -
M. A. Muratov; B. A. Rubshtein. Embedding theorems for symmetric spaces of measurable functions. Taurida Journal of Computer Science Theory and Mathematics, no. 1 (2018), pp. 67-88. http://geodesic.mathdoc.fr/item/TVIM_2018_1_a5/