The classification of paths in the Galilean geometry
Taurida Journal of Computer Science Theory and Mathematics, no. 1 (2017), pp. 95-111
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $X$ be $n$-dimensional linear space over field $\mathbb R$ of real numbers and let $GL(n, \mathbb {R})$ be the group of all invertible linear transformations of the space $ X $. Two paths $x(t), \ y(t)\subset X, \ t \in (0,1), $ are called $G$-equivalent with respect to the action of the subgroup $ G $ of the group $ GL(n, \mathbb {R}) $ if $ g (x(t)) =y(t) $ for some $ g \in G $ and all $t \in (0,1)$. One of the important problems of differential geometry is finding necessary and sufficient conditions such that the paths $x(t), \ y(t)$ are
$G$-equivalent. The solutions of this problem use methods of the theory of differential invariants, giving a description of finite rational bases of differential fields of $ G $-invariant differential rational functions. These bases provide effective criteria for $ G $-equivalence of paths. This approach was used in
for solving the problem of the equivalence of paths with respect to the action of the symplectic, orthogonal and pseudo-orthogonal groups.
An important example of a non-Euclidean geometry is the Galileo geometry. The group $\Gamma (n, \mathbb {R}) $ of all invertible linear transformations of the space $ X $, preserving the Galilean metric, are called Galileo's group.
We give the following description of a finite rational basis in the differential field $\mathbb{R} \langle x_1,\dots,x_n \rangle^{\Gamma(n,\mathbb{R})}$ of all $\Gamma(n,\mathbb R)$-invariant differential rational functions.
In the field $\mathbb{R} \langle x_1,\dots,x_n \rangle^{\Gamma(n,\mathbb{R})}$ the following differential polynomials form its a rational basis:
\begin{gather*}
\varphi_k(x_1,\dots,x_n) = \sum_{i=2}^n(x_i^{(k)})^2, \ k=0,\dots, n-2;\\
\psi(x_1,\dots,x_n) = x_1.
\end{gather*}
Using this rational basis the following necessary and sufficient conditions for the $\Gamma(n,\mathbb R)$-equivalence of two regular paths are established. Two regular paths $x(t)=\{x_i(t)\}_{i=1}^n$ and $y(t)=\{y_i(t)\}_{i=1}^n$ are $\Gamma(n,\mathbb{R})$-equivalent
if and only if $y_1(t)=\pm x_1(t)$ and
$\sum\limits^n_{i=2}\left(x^{(m)}_i(t)\right)^2=
\sum\limits^n_{i=2}\left(y^{(m)}_i(t)\right)^2$
for all $t\in(0,1)$ and $m=0,1,\dots,n-2$.
Keywords:
Galileo space, a group of movements, differential invariant.
@article{TVIM_2017_1_a7,
author = {V. I. Chilin and K. K. Muminov},
title = {The classification of paths in the {Galilean} geometry},
journal = {Taurida Journal of Computer Science Theory and Mathematics},
pages = {95--111},
publisher = {mathdoc},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVIM_2017_1_a7/}
}
TY - JOUR AU - V. I. Chilin AU - K. K. Muminov TI - The classification of paths in the Galilean geometry JO - Taurida Journal of Computer Science Theory and Mathematics PY - 2017 SP - 95 EP - 111 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVIM_2017_1_a7/ LA - ru ID - TVIM_2017_1_a7 ER -
V. I. Chilin; K. K. Muminov. The classification of paths in the Galilean geometry. Taurida Journal of Computer Science Theory and Mathematics, no. 1 (2017), pp. 95-111. http://geodesic.mathdoc.fr/item/TVIM_2017_1_a7/