Minimality of selfadjoint dilation of operator knot of dissipative operator
Taurida Journal of Computer Science Theory and Mathematics, no. 1 (2017), pp. 7-16
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $A$ is dissipative densely defined operator in the space $\mathfrak{H}$ and $-i \in \rho\left(A\right)$.
Let denote $R = {\left(A+iI\right)}^{-1}$ and consider the defect operators
\begin{gather*}
B = iR - i{R}^{*} -2{R}^{*}R,\\
\widetilde{B} = iR - i{R}^{*} - 2R{R}^{*},\\
T = I - 2iR.
\end{gather*}
A set of linear bounded operators acting from an entire Hilbert space ${H}_{1}$ into a Hilbert space ${H}_{2}$ will be denoted by $L\left({H}_{1}, {H}_{2}\right)$.
Definition. The assembly of Hilbert spaces $\mathfrak{H}$, ${E}_{-}$ и ${E}_{+}$ and operators $A: \mathfrak{H} \rightarrow \mathfrak{H}, \Phi \in L\left({E}_{-}, \mathfrak{H}\right), \Psi \in L\left(\mathfrak{H}, {E}_{+}\right), K \in L\left({E}_{-}, {E}_{+}\right)$
is called the operator knot, which has been introduced in work of U. L. Kudryashov «Selfadjoint dilation of operator knot of dissipative operator» in «Dynamic systems», 3(31), №1-2, 2013, p. 45-48${}^{\left[1\right]}$.
$Q = \left(A, \Phi, K, \Psi, \mathfrak{H}, {E}_{-}, {E}_{+}\right)$, if the following relations hold:
\begin{gather*}
B = {\Psi}^{*}\Psi;\\
\widetilde{B} = {\Phi}{\Phi}^{*};\\
{T}^{*}\Phi + {\Psi}^{*}K = 0;\\
T{\Psi}^{*}+{\Phi}{K}^{*} = 0;\\
2{\Phi}^{*}{\Phi}+{K}^{*}K = I;\\
2{\Psi}{\Psi}^{*} + K{K}^{*} = I.
\end{gather*} Selfadjoint dilation $S$ of dissipative operator $A$ is constructed using the knot $\Theta$ in [1] in the following manner.
The spaces ${H}_{-} = {L}_{2} \left( \left( -\infty, 0 \right], {E}_{-} \right)$, ${H}_{+} = {L}_{2} \left( \left[0, +\infty\right) \right)$ and
$H = {H}_{-} \oplus \mathfrak{H} \oplus {H}_{+}$ are considered.
The vector $h = \left({h}_{-}, {h}_{0}, {h}_{+}\right) \in \mathfrak{D}\left(S\right)$ if and only if
$\left\{ {h}_{\pm}, \frac{{dh}_{\pm}\left(t\right)}{dt} \right\} \subset {H}_{\pm}$;
$\widetilde{h} = {h}_{0} + \Phi {h}_{-} \left(0\right) \in \mathfrak{D}\left(A\right)$;
${h}_{+}\left(0\right) = -K{h}_{-} \left(0\right) + i\Psi \left(A+iI\right) \widetilde{h}$.
Theorem. The dilation $S$ is minimal, i.e.
$$H = \overline{span\left\{ {R}_{\pm i} \left(S\right) h \mid h \in \mathfrak{H}, n \in \left\{0\right\} \cup \mathbb{N} \right\}}$$
if the spaces ${E}_{+} = \overline{\Psi \mathfrak{H}}$, ${E}_{-} = \overline{{\Phi}^{*}\mathfrak{H}}$ are separable.
The following expressions was used for the proof:
$$
{R}^{n}_{-i}\left(S\right)
\begin{pmatrix}
0\\
{h}_{0}\\
0
\end{pmatrix}
=
\begin{pmatrix}
0\\
{a}_{n}\\
{b}_{n}
\end{pmatrix},
$$
where $n \in \mathbb{N}$, ${a}_{n} = {R}^{n} {h}_{0}$, $${b}_{n} = {e}^{-t} \sum\limits_{k=1}^{n} \frac{{t}^{n-k}}{\left(n-k\right)! {i}^{n-k-1}} \Psi {R}^{k-1} {h}_{0}.$$
$$
{R}^{n}_{i} \left(S\right)
\begin{pmatrix}
0 \\
{h}_{0} \\
0
\end{pmatrix}
=
\begin{pmatrix}
{c}_{n} \\
{d}_{n} \\
0
\end{pmatrix},
$$
where ${d}_{n} = {{R}^{*}}^{n} {h}_{0}$, $${c}_{n} = {e}^{t} \sum\limits_{k=1}^{n} \frac{{t}^{n-k}}{\left(n-k\right)! {\left(-i\right)}^{n-k-1}} {\Phi}^{*} {{R}^{*}}^{k-1} {h}_{0},$$
where ${h}_{0} \in \mathfrak{H}$.
Mots-clés :
dilation
Keywords: self-adjoint operator, unbounded dissipative operator, minimality, operatorknot.
Keywords: self-adjoint operator, unbounded dissipative operator, minimality, operatorknot.
@article{TVIM_2017_1_a0,
author = {A. V. Bidanets and Yu. L. Kudryashov},
title = {Minimality of selfadjoint dilation of operator knot of dissipative operator},
journal = {Taurida Journal of Computer Science Theory and Mathematics},
pages = {7--16},
publisher = {mathdoc},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVIM_2017_1_a0/}
}
TY - JOUR AU - A. V. Bidanets AU - Yu. L. Kudryashov TI - Minimality of selfadjoint dilation of operator knot of dissipative operator JO - Taurida Journal of Computer Science Theory and Mathematics PY - 2017 SP - 7 EP - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVIM_2017_1_a0/ LA - ru ID - TVIM_2017_1_a0 ER -
%0 Journal Article %A A. V. Bidanets %A Yu. L. Kudryashov %T Minimality of selfadjoint dilation of operator knot of dissipative operator %J Taurida Journal of Computer Science Theory and Mathematics %D 2017 %P 7-16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVIM_2017_1_a0/ %G ru %F TVIM_2017_1_a0
A. V. Bidanets; Yu. L. Kudryashov. Minimality of selfadjoint dilation of operator knot of dissipative operator. Taurida Journal of Computer Science Theory and Mathematics, no. 1 (2017), pp. 7-16. http://geodesic.mathdoc.fr/item/TVIM_2017_1_a0/