Vibrations of a fluid containing a wide spaced net with floats under its free surface
Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 31 (2016) no. 31, pp. 38-62
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem of low-frequency vibrations of a heavy viscous incompressible fluid occupying a vessel. Under the free surface of the fluid, there is a wide spaced net with floats forming a nonperiodic structure. On the walls of the vessel and the surface of the floats the adhesion condition (zero Dirichlet condition) is imposed. For this problem, which is formulated in terms of a quadratic operator pencil, we construct a limit (homogenized) pencil and establish a homogenization theorem in the case of a “fairly small” number of floats. It is shown that asymptotically, this structure does not affect free vibrations of the fluid.
@article{TSP_2016_31_31_a2,
author = {S. T. Erov and G. A. Chechkin},
title = {Vibrations of a fluid containing a wide spaced net with floats under its free surface},
journal = {Trudy Seminara im. I.G. Petrovskogo},
pages = {38--62},
publisher = {mathdoc},
volume = {31},
number = {31},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a2/}
}
TY - JOUR AU - S. T. Erov AU - G. A. Chechkin TI - Vibrations of a fluid containing a wide spaced net with floats under its free surface JO - Trudy Seminara im. I.G. Petrovskogo PY - 2016 SP - 38 EP - 62 VL - 31 IS - 31 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a2/ LA - ru ID - TSP_2016_31_31_a2 ER -
S. T. Erov; G. A. Chechkin. Vibrations of a fluid containing a wide spaced net with floats under its free surface. Trudy Seminara im. I.G. Petrovskogo, Trudy Seminara imeni I. G. Petrovskogo, Tome 31 (2016) no. 31, pp. 38-62. http://geodesic.mathdoc.fr/item/TSP_2016_31_31_a2/