On the Minimum of the Wehrl Entropy for a Locally Compact Abelian Group
Informatics and Automation, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 95-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

A construction of the Wehrl entropy is proposed for an arbitrary locally compact abelian group $G$. It is proved that the Wehrl entropy is not less than a certain nonnegative integer, which is an invariant of the group $G$. The minimum of the Wehrl entropy is attained on coherent states.
Keywords: coherent states, Wehrl entropy
Mots-clés : commutation relations.
@article{TRSPY_2024_324_a8,
     author = {Evgeny I. Zelenov},
     title = {On the {Minimum} of the {Wehrl} {Entropy} for a {Locally} {Compact} {Abelian} {Group}},
     journal = {Informatics and Automation},
     pages = {95--100},
     publisher = {mathdoc},
     volume = {324},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a8/}
}
TY  - JOUR
AU  - Evgeny I. Zelenov
TI  - On the Minimum of the Wehrl Entropy for a Locally Compact Abelian Group
JO  - Informatics and Automation
PY  - 2024
SP  - 95
EP  - 100
VL  - 324
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a8/
LA  - ru
ID  - TRSPY_2024_324_a8
ER  - 
%0 Journal Article
%A Evgeny I. Zelenov
%T On the Minimum of the Wehrl Entropy for a Locally Compact Abelian Group
%J Informatics and Automation
%D 2024
%P 95-100
%V 324
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a8/
%G ru
%F TRSPY_2024_324_a8
Evgeny I. Zelenov. On the Minimum of the Wehrl Entropy for a Locally Compact Abelian Group. Informatics and Automation, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 95-100. http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a8/

[1] Amosov G.G., “On quantum tomography on locally compact groups”, Phys. Lett. A, 431 (2022), 128002 ; arXiv: 2201.06049 [quant-ph] | DOI | MR | Zbl | DOI

[2] Amosov G.G., “On quantum channels generated by covariant positive operator-valued measures on a locally compact group”, Quantum Inf. Process., 21:9 (2022), 312 ; arXiv: 2209.03703 [quant-ph] | DOI | MR | Zbl | DOI

[3] G. M. Fel'dman, “Bernstein Gaussian distributions on groups”, Theory Probab. Appl., 31:1 (1987), 40–49 ; Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, v. 1, Struktura topologicheskikh grupp. Teoriya integrirovaniya. Predstavleniya grupp, Nauka, M., 1975 | DOI | MR | Zbl | Zbl

[4] E. Hewitt and K. Ross, Abstract Harmonic Analysis, v. I, Grundl. Math. Wiss., 115, Structure of Topological Groups, Integration Theory, Group Representations, 2nd ed., Springer, Berlin, 1994 | MR | MR | Zbl

[5] A. S. Holevo, “Gaussian optimizers and the additivity problem in quantum information theory”, Russ. Math. Surv., 70:2 (2015), 331–367 | DOI | DOI | MR | Zbl

[6] Lieb E.H., “Proof of an entropy conjecture of Wehrl”, Commun. Math. Phys., 62:1 (1978), 35–41 | DOI | MR | Zbl

[7] Lieb E.H., “Gaussian kernels have only Gaussian maximizers”, Invent. math., 102:1 (1990), 179–208 | DOI | MR | Zbl

[8] Lieb E.H., Seiringer R., “Stronger subadditivity of entropy”, Phys. Rev. A, 71:6 (2005), 062329 | DOI | MR | Zbl

[9] Mackey G.W., “A theorem of Stone and von Neumann”, Duke Math. J., 16:2 (1949), 313–326 | DOI | MR | Zbl

[10] Prasad A., “An easy proof of the Stone–von Neumann–Mackey theorem”, Expo. math., 29:1 (2011), 110–118 | DOI | MR | Zbl

[11] Robertson L., Schreiber B.M., “The additive structure of integer groups and $p$-adic number fields”, Proc. Am. Math. Soc., 19:6 (1968), 1453–1456 | DOI | MR | Zbl

[12] Rosenberg J., “A selective history of the Stone–von Neumann theorem”, Operator algebras, quantization, and noncommutative geometry: A centennial celebration honoring J. von Neumann and M.H. Stone, Contemp. Math., 365, Am. Math. Soc., Providence, RI, 2004, 331–353 | DOI | MR | Zbl

[13] Wehrl A., “On the relation between classical and quantum-mechanical entropy”, Rep. Math. Phys., 16:3 (1979), 353–358 | DOI | MR | Zbl

[14] Wehrl A., “General properties of entropy”, Rev. Mod. Phys., 50:2 (1978), 221–260 ; Veil A., “O nekotorykh gruppakh unitarnykh operatorov”, Matematika, 13:5 (1969), 33–94 | DOI | MR

[15] A. Weil, “Sur certains groupes d'opérateurs unitaires”, Acta Math., 111 (1964), 143–211 | DOI | MR | Zbl

[16] Zelenov E., “Coherent states of the $p$-adic Heisenberg group and entropic uncertainty relations”, p-Adic Numbers Ultrametric Anal. Appl., 15:3 (2023), 195–203 | DOI | MR | Zbl