Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2024_324_a8, author = {Evgeny I. Zelenov}, title = {On the {Minimum} of the {Wehrl} {Entropy} for a {Locally} {Compact} {Abelian} {Group}}, journal = {Informatics and Automation}, pages = {95--100}, publisher = {mathdoc}, volume = {324}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a8/} }
Evgeny I. Zelenov. On the Minimum of the Wehrl Entropy for a Locally Compact Abelian Group. Informatics and Automation, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 95-100. http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a8/
[1] Amosov G.G., “On quantum tomography on locally compact groups”, Phys. Lett. A, 431 (2022), 128002 ; arXiv: 2201.06049 [quant-ph] | DOI | MR | Zbl | DOI
[2] Amosov G.G., “On quantum channels generated by covariant positive operator-valued measures on a locally compact group”, Quantum Inf. Process., 21:9 (2022), 312 ; arXiv: 2209.03703 [quant-ph] | DOI | MR | Zbl | DOI
[3] G. M. Fel'dman, “Bernstein Gaussian distributions on groups”, Theory Probab. Appl., 31:1 (1987), 40–49 ; Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, v. 1, Struktura topologicheskikh grupp. Teoriya integrirovaniya. Predstavleniya grupp, Nauka, M., 1975 | DOI | MR | Zbl | Zbl
[4] E. Hewitt and K. Ross, Abstract Harmonic Analysis, v. I, Grundl. Math. Wiss., 115, Structure of Topological Groups, Integration Theory, Group Representations, 2nd ed., Springer, Berlin, 1994 | MR | MR | Zbl
[5] A. S. Holevo, “Gaussian optimizers and the additivity problem in quantum information theory”, Russ. Math. Surv., 70:2 (2015), 331–367 | DOI | DOI | MR | Zbl
[6] Lieb E.H., “Proof of an entropy conjecture of Wehrl”, Commun. Math. Phys., 62:1 (1978), 35–41 | DOI | MR | Zbl
[7] Lieb E.H., “Gaussian kernels have only Gaussian maximizers”, Invent. math., 102:1 (1990), 179–208 | DOI | MR | Zbl
[8] Lieb E.H., Seiringer R., “Stronger subadditivity of entropy”, Phys. Rev. A, 71:6 (2005), 062329 | DOI | MR | Zbl
[9] Mackey G.W., “A theorem of Stone and von Neumann”, Duke Math. J., 16:2 (1949), 313–326 | DOI | MR | Zbl
[10] Prasad A., “An easy proof of the Stone–von Neumann–Mackey theorem”, Expo. math., 29:1 (2011), 110–118 | DOI | MR | Zbl
[11] Robertson L., Schreiber B.M., “The additive structure of integer groups and $p$-adic number fields”, Proc. Am. Math. Soc., 19:6 (1968), 1453–1456 | DOI | MR | Zbl
[12] Rosenberg J., “A selective history of the Stone–von Neumann theorem”, Operator algebras, quantization, and noncommutative geometry: A centennial celebration honoring J. von Neumann and M.H. Stone, Contemp. Math., 365, Am. Math. Soc., Providence, RI, 2004, 331–353 | DOI | MR | Zbl
[13] Wehrl A., “On the relation between classical and quantum-mechanical entropy”, Rep. Math. Phys., 16:3 (1979), 353–358 | DOI | MR | Zbl
[14] Wehrl A., “General properties of entropy”, Rev. Mod. Phys., 50:2 (1978), 221–260 ; Veil A., “O nekotorykh gruppakh unitarnykh operatorov”, Matematika, 13:5 (1969), 33–94 | DOI | MR
[15] A. Weil, “Sur certains groupes d'opérateurs unitaires”, Acta Math., 111 (1964), 143–211 | DOI | MR | Zbl
[16] Zelenov E., “Coherent states of the $p$-adic Heisenberg group and entropic uncertainty relations”, p-Adic Numbers Ultrametric Anal. Appl., 15:3 (2023), 195–203 | DOI | MR | Zbl