On the Minimum of the Wehrl Entropy for a Locally Compact Abelian Group
Informatics and Automation, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 95-100
Voir la notice de l'article provenant de la source Math-Net.Ru
A construction of the Wehrl entropy is proposed for an arbitrary locally compact abelian group $G$. It is proved that the Wehrl entropy is not less than a certain nonnegative integer, which is an invariant of the group $G$. The minimum of the Wehrl entropy is attained on coherent states.
Keywords:
coherent states, Wehrl entropy
Mots-clés : commutation relations.
Mots-clés : commutation relations.
@article{TRSPY_2024_324_a8,
author = {Evgeny I. Zelenov},
title = {On the {Minimum} of the {Wehrl} {Entropy} for a {Locally} {Compact} {Abelian} {Group}},
journal = {Informatics and Automation},
pages = {95--100},
publisher = {mathdoc},
volume = {324},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a8/}
}
Evgeny I. Zelenov. On the Minimum of the Wehrl Entropy for a Locally Compact Abelian Group. Informatics and Automation, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 95-100. http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a8/