On Jensen Gap and Capacity of a Shifted Depolarizing Quantum Channel
Informatics and Automation, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 39-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of maximizing the Jensen gap with respect to the probability distribution in a fairly general case, and prove a theorem on the optimal distribution. Using the results obtained, we calculate the one-shot capacity of a certain family of non-unital quantum channels. We show that in sufficiently large dimensions the channel admits one of two modes of an optimal input ensemble depending on the parameters. We also prove that both the fulfillment and the violation of the entanglement-breaking property are possible in any dimension depending on the parameters of the channel.
Keywords: quantum communication channel, shifted depolarizing channel, channel capacity.
@article{TRSPY_2024_324_a3,
     author = {E. L. Baitenov},
     title = {On {Jensen} {Gap} and {Capacity} of a {Shifted} {Depolarizing} {Quantum} {Channel}},
     journal = {Informatics and Automation},
     pages = {39--50},
     publisher = {mathdoc},
     volume = {324},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a3/}
}
TY  - JOUR
AU  - E. L. Baitenov
TI  - On Jensen Gap and Capacity of a Shifted Depolarizing Quantum Channel
JO  - Informatics and Automation
PY  - 2024
SP  - 39
EP  - 50
VL  - 324
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a3/
LA  - ru
ID  - TRSPY_2024_324_a3
ER  - 
%0 Journal Article
%A E. L. Baitenov
%T On Jensen Gap and Capacity of a Shifted Depolarizing Quantum Channel
%J Informatics and Automation
%D 2024
%P 39-50
%V 324
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a3/
%G ru
%F TRSPY_2024_324_a3
E. L. Baitenov. On Jensen Gap and Capacity of a Shifted Depolarizing Quantum Channel. Informatics and Automation, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 39-50. http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a3/

[1] Abramovich S., Persson L.-E., “Some new estimates of the “Jensen gap””, J. Inequal. Appl., 2016, 39 | DOI | MR | Zbl

[2] Amosov G.G., “On capacity of quantum channels generated by irreducible projective unitary representations of finite groups”, Quantum Inf. Process., 21:2 (2022), 81 | DOI | MR | Zbl

[3] G. G. Amosov, A. S. Holevo, and R. F. Werner, “On the additivity conjecture in quantum information theory”, Probl. Inf. Transm., 36:4 (2000), 305–313 | MR | Zbl

[4] Amosov G.G., Mancini S., “The decreasing property of relative entropy and the strong superadditivity of quantum channels”, Quantum Inf. Comput., 9:7–8 (2009), 594–609 | MR | Zbl

[5] Beigi S., Shor P.W., On the complexity of computing zero-error and Holevo capacity of quantum channels, E-print, 2007, arXiv: 0709.2090 [quant-ph] | DOI

[6] Filippov S.N., “Lower and upper bounds on nonunital qubit channel capacities”, Rep. Math. Phys., 82:2 (2018), 149–159 | DOI | MR | Zbl

[7] Fujiwara A., Nagaoka H., “Operational capacity and pseudoclassicality of a quantum channel”, IEEE Trans. Inf. Theory, 44:3 (1998), 1071–1086 | DOI | MR | Zbl

[8] Giovannetti V., Lloyd S., Ruskai M.B., “Conditions for multiplicativity of maximal $\ell _p$-norms of channels for fixed integer $p$”, J. Math. Phys., 46:4 (2005), 042105 | DOI | MR | Zbl

[9] Hastings M.B., “Superadditivity of communication capacity using entangled inputs”, Nature Phys., 5:4 (2009), 255–257 | DOI

[10] Holevo A.S., “The capacity of the quantum channel with general signal states”, IEEE Trans. Inf. Theory, 44:1 (1998), 269–273 | DOI | MR | Zbl

[11] A. S. Holevo, “Complementary channels and the additivity problem”, Theory Probab. Appl., 51:1 (2007), 92–100 | DOI | DOI | MR | Zbl

[12] A. S. Holevo, Quantum Systems, Channels, Information: A Mathematical Introduction, De Gruyter, Berlin, 2012 | MR | Zbl

[13] Horodecki M., Shor P.W., Ruskai M.B., “Entanglement breaking channels”, Rev. Math. Phys., 15:6 (2003), 629–641 | DOI | MR | Zbl

[14] Jensen J.L.W.V., “Sur les fonctions convexes et les inégalités entre les valeurs moyennes”, Acta math., 30 (1906), 175–193 | DOI | MR

[15] Khan M.A., Khan S., Chu Y., “A new bound for the Jensen gap with applications in information theory”, IEEE Access, 8 (2020), 98001–98008 | DOI

[16] King C., “Additivity for unital qubit channels”, J. Math. Phys., 43:10 (2002), 4641–4653 | DOI | MR | Zbl

[17] King C., “The capacity of the quantum depolarizing channel”, IEEE Trans. Inf. Theory, 49:1 (2003), 221–229 | DOI | MR | Zbl

[18] Nagaoka H., “Algorithms of Arimoto–Blahut type for computing quantum channel capacity”, Proc. 1998 IEEE Int. Symp. on Information Theory, IEEE, Piscataway, NJ, 1998, 354 | DOI

[19] Nielsen M.A., Chuang I.L., Quantum computation and quantum information, 10th ed., Cambridge Univ. Press, Cambridge, 2010 | DOI | MR | Zbl

[20] Rockafellar R.T., Convex analysis, Princeton Math. Ser., 28, Princeton Univ. Press, Princeton, NJ, 1970 | DOI | MR | Zbl

[21] Schumacher B., Westmoreland M.D., “Sending classical information via noisy quantum channels”, Phys. Rev. A, 56:1 (1997), 131–138 | DOI | MR

[22] Shannon C.E., “A mathematical theory of communication”, Bell Syst. Tech. J., 27 (1948), 379–423, 623–656 | DOI | MR | Zbl

[23] Shor P.W., “Additivity of the classical capacity of entanglement-breaking quantum channels”, J. Math. Phys., 43:9 (2002), 4334–4340 | DOI | MR | Zbl