Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2024_324_a3, author = {E. L. Baitenov}, title = {On {Jensen} {Gap} and {Capacity} of a {Shifted} {Depolarizing} {Quantum} {Channel}}, journal = {Informatics and Automation}, pages = {39--50}, publisher = {mathdoc}, volume = {324}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a3/} }
E. L. Baitenov. On Jensen Gap and Capacity of a Shifted Depolarizing Quantum Channel. Informatics and Automation, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 39-50. http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a3/
[1] Abramovich S., Persson L.-E., “Some new estimates of the “Jensen gap””, J. Inequal. Appl., 2016, 39 | DOI | MR | Zbl
[2] Amosov G.G., “On capacity of quantum channels generated by irreducible projective unitary representations of finite groups”, Quantum Inf. Process., 21:2 (2022), 81 | DOI | MR | Zbl
[3] G. G. Amosov, A. S. Holevo, and R. F. Werner, “On the additivity conjecture in quantum information theory”, Probl. Inf. Transm., 36:4 (2000), 305–313 | MR | Zbl
[4] Amosov G.G., Mancini S., “The decreasing property of relative entropy and the strong superadditivity of quantum channels”, Quantum Inf. Comput., 9:7–8 (2009), 594–609 | MR | Zbl
[5] Beigi S., Shor P.W., On the complexity of computing zero-error and Holevo capacity of quantum channels, E-print, 2007, arXiv: 0709.2090 [quant-ph] | DOI
[6] Filippov S.N., “Lower and upper bounds on nonunital qubit channel capacities”, Rep. Math. Phys., 82:2 (2018), 149–159 | DOI | MR | Zbl
[7] Fujiwara A., Nagaoka H., “Operational capacity and pseudoclassicality of a quantum channel”, IEEE Trans. Inf. Theory, 44:3 (1998), 1071–1086 | DOI | MR | Zbl
[8] Giovannetti V., Lloyd S., Ruskai M.B., “Conditions for multiplicativity of maximal $\ell _p$-norms of channels for fixed integer $p$”, J. Math. Phys., 46:4 (2005), 042105 | DOI | MR | Zbl
[9] Hastings M.B., “Superadditivity of communication capacity using entangled inputs”, Nature Phys., 5:4 (2009), 255–257 | DOI
[10] Holevo A.S., “The capacity of the quantum channel with general signal states”, IEEE Trans. Inf. Theory, 44:1 (1998), 269–273 | DOI | MR | Zbl
[11] A. S. Holevo, “Complementary channels and the additivity problem”, Theory Probab. Appl., 51:1 (2007), 92–100 | DOI | DOI | MR | Zbl
[12] A. S. Holevo, Quantum Systems, Channels, Information: A Mathematical Introduction, De Gruyter, Berlin, 2012 | MR | Zbl
[13] Horodecki M., Shor P.W., Ruskai M.B., “Entanglement breaking channels”, Rev. Math. Phys., 15:6 (2003), 629–641 | DOI | MR | Zbl
[14] Jensen J.L.W.V., “Sur les fonctions convexes et les inégalités entre les valeurs moyennes”, Acta math., 30 (1906), 175–193 | DOI | MR
[15] Khan M.A., Khan S., Chu Y., “A new bound for the Jensen gap with applications in information theory”, IEEE Access, 8 (2020), 98001–98008 | DOI
[16] King C., “Additivity for unital qubit channels”, J. Math. Phys., 43:10 (2002), 4641–4653 | DOI | MR | Zbl
[17] King C., “The capacity of the quantum depolarizing channel”, IEEE Trans. Inf. Theory, 49:1 (2003), 221–229 | DOI | MR | Zbl
[18] Nagaoka H., “Algorithms of Arimoto–Blahut type for computing quantum channel capacity”, Proc. 1998 IEEE Int. Symp. on Information Theory, IEEE, Piscataway, NJ, 1998, 354 | DOI
[19] Nielsen M.A., Chuang I.L., Quantum computation and quantum information, 10th ed., Cambridge Univ. Press, Cambridge, 2010 | DOI | MR | Zbl
[20] Rockafellar R.T., Convex analysis, Princeton Math. Ser., 28, Princeton Univ. Press, Princeton, NJ, 1970 | DOI | MR | Zbl
[21] Schumacher B., Westmoreland M.D., “Sending classical information via noisy quantum channels”, Phys. Rev. A, 56:1 (1997), 131–138 | DOI | MR
[22] Shannon C.E., “A mathematical theory of communication”, Bell Syst. Tech. J., 27 (1948), 379–423, 623–656 | DOI | MR | Zbl
[23] Shor P.W., “Additivity of the classical capacity of entanglement-breaking quantum channels”, J. Math. Phys., 43:9 (2002), 4334–4340 | DOI | MR | Zbl