Arveson's Extension Theorem for Conditionally Unital Completely Positive Maps
Informatics and Automation, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 277-291.

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditionally unital completely positive maps are used to characterize generators of unital completely positive semigroups on $C^*$-algebras. In this work, a generalization of this notion is proposed that includes maps between different operator systems. In terms of this generalization, conditionally unital completely positive maps are infinitesimal increments of unital completely positive maps. The basic properties of conditionally unital completely positive maps are studied, the Choi–Jamiołkowski duality is established, and an Arveson-type extension theorem for completely bounded conditionally unital completely positive maps is proved in the case of maps with values in finite-dimensional $C^*$-algebras.
Keywords: operator systems, completely positive maps, one-parameter semigroups, quantum channels, noncommutative probability.
@article{TRSPY_2024_324_a20,
     author = {Vsevolod I. Yashin},
     title = {Arveson's {Extension} {Theorem} for {Conditionally} {Unital} {Completely} {Positive} {Maps}},
     journal = {Informatics and Automation},
     pages = {277--291},
     publisher = {mathdoc},
     volume = {324},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a20/}
}
TY  - JOUR
AU  - Vsevolod I. Yashin
TI  - Arveson's Extension Theorem for Conditionally Unital Completely Positive Maps
JO  - Informatics and Automation
PY  - 2024
SP  - 277
EP  - 291
VL  - 324
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a20/
LA  - ru
ID  - TRSPY_2024_324_a20
ER  - 
%0 Journal Article
%A Vsevolod I. Yashin
%T Arveson's Extension Theorem for Conditionally Unital Completely Positive Maps
%J Informatics and Automation
%D 2024
%P 277-291
%V 324
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a20/
%G ru
%F TRSPY_2024_324_a20
Vsevolod I. Yashin. Arveson's Extension Theorem for Conditionally Unital Completely Positive Maps. Informatics and Automation, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 277-291. http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a20/

[1] Aliprantis C.D., Tourky R., Cones and duality, Grad. Stud. Math., 84, Am. Math. Soc., Providence, RI, 2007 | DOI | MR | Zbl

[2] Arendt W., Chernoff P.R., Kato T., “A generalization of dissipativity and positive semigroups”, J. Oper. Theory, 8:1 (1982), 167–180 | MR | Zbl

[3] Arveson W.B., “Subalgebras of $C^*$-algebras”, Acta math., 123 (1969), 141–224 | DOI | MR | Zbl

[4] Arveson W., “The noncommutative Choquet boundary. III: Operator systems in matrix algebras”, Math. Scand., 106:2 (2010), 196–210 | DOI | MR | Zbl

[5] Belton A.C.R., “Introduction to classical and quantum Markov semigroups”, Open quantum systems: A mathematical perspective, Springer, Cham, 2019, 1–54 | DOI | MR

[6] Blecher D.P., Magajna B., “Dual operator systems”, Bull. London Math. Soc., 43:2 (2011), 311–320 | DOI | MR | Zbl

[7] Breuer H.-P., Petruccione F., The theory of open quantum systems, Oxford Univ. Press, Oxford, 2007 | DOI | MR | Zbl

[8] Choi M.-D., “A Schwarz inequality for positive linear maps on $C^*$-algebras”, Ill. J. Math., 18:4 (1974), 565–574 | DOI | MR | Zbl

[9] Choi M.-D., Effros E.G., “Injectivity and operator spaces”, J. Funct. Anal., 24:2 (1977), 156–209 | DOI | MR | Zbl

[10] Connes A., van Suijlekom W.D., “Spectral truncations in noncommutative geometry and operator systems”, Commun. Math. Phys., 383:3 (2021), 2021–2067 | DOI | MR | Zbl

[11] Christensen E., “Generators of semigroups of completely positive maps”, Commun. Math. Phys., 62:2 (1978), 167–171 | DOI | MR | Zbl

[12] Christensen E., Evans D.E., “Cohomology of operator algebras and quantum dynamical semigroups”, J. London Math. Soc., 20:2 (1979), 358–368 | DOI | MR | Zbl

[13] Davidson K.R., Kennedy M., Noncommutative Choquet theory, E-print, 2019, arXiv: 1905.08436 [math.OA] | DOI

[14] Duan R., Severini S., Winter A., “Zero-error communication via quantum channels, noncommutative graphs, and a quantum Lovász number”, IEEE Trans. Inf. Theory, 59:2 (2013), 1164–1174 | DOI | MR | Zbl

[15] Effros E.G., Ruan Z.-J., Operator spaces, LMS Monogr. New Ser., 23, Clarendon Press, Oxford, 2000 | MR | Zbl

[16] Vom Ende F., “Quantum-dynamical semigroups and the church of the larger Hilbert space”, Open Syst. Inf. Dyn., 30:1 (2023), 2350003 | DOI | MR | Zbl

[17] Engel K.-J., Nagel R., One-parameter semigroups for linear evolution equations, Grad. Texts Math., 194, Springer, New York, 2000 | DOI | MR | Zbl

[18] Evans D.E., “Conditionally completely positive maps on operator algebras”, Q. J. Math., 28:3 (1977), 271–283 | DOI | MR | Zbl

[19] Evans D.E., Hanche-Olsen H., “The generators of positive semigroups”, J. Funct. Anal., 32:2 (1979), 207–212 | DOI | MR | Zbl

[20] Fritz T., Netzer T., Thom A., “Spectrahedral containment and operator systems with finite-dimensional realization”, SIAM J. Appl. Algebra Geom., 1:1 (2017), 556–574 | DOI | MR

[21] Hamana M., “Injective envelopes of operator systems”, Publ. Res. Inst. Math. Sci., 15:3 (1979), 773–785 | DOI | MR | Zbl

[22] Helemskii A.Ya., Quantum functional analysis: Non-coordinate approach, Univ. Lect. Ser., 56, Am. Math. Soc., Providence, RI, 2010 | DOI | MR | Zbl

[23] A. S. Holevo, “Conditionally positive-definite functions in quantum probability theory”, J. Sov. Math., 56:5 (1991), 2670–2697 | DOI | MR

[24] A. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, 2nd ed., Ed. Normale, Pisa, 2011 | MR | MR | Zbl

[25] A. S. Holevo, Quantum Systems, Channels, Information: A Mathematical Introduction, De Gruyter, Berlin, 2012 | MR | Zbl

[26] Kadison R.V., A representation theory for commutative topological algebra, Mem. AMS, 7, Am. Math. Soc., Providence, RI, 1951 | DOI | MR | Zbl

[27] Kennedy M., Shamovich E., “Noncommutative Choquet simplices”, Math. Ann., 382:3–4 (2022), 1591–1629 | DOI | MR | Zbl

[28] Kishimoto A., “Dissipations and derivations”, Commun. Math. Phys., 47:1 (1976), 25–32 | DOI | MR | Zbl

[29] Kraus K., States, effects, and operations: Fundamental notions of quantum theory, Lect. Notes Phys., 190, ed. by A. Böhm, J.D. Dollard, W.H. Wootters, Springer, Berlin, 1983 | DOI | MR | Zbl

[30] Krein M.G., “Pro pozitivni aditivni funktsionali v liniinikh normovanikh prostorakh”, Zap. Khark. mat. o-va, 14 (1937), 227–237 | Zbl

[31] Lindblad G., “On the generators of quantum dynamical semigroups”, Commun. Math. Phys., 48:2 (1976), 119–130 | DOI | MR | Zbl

[32] Van Neerven J., The adjoint of a semigroup of linear operators, Lect. Notes Math., 1529, Springer, Berlin, 1992 | DOI | MR | Zbl

[33] Paschke W.L., “Inner product modules over $B^*$-algebras”, Trans. Am. Math. Soc., 182 (1973), 443–468 | DOI | MR | Zbl

[34] Paulsen V., Completely bounded maps and operator algebras, Cambridge Stud. Adv. Math., 78, Cambridge Univ. Press, Cambridge, 2003 | DOI | MR

[35] Paulsen V.I., Tomforde M., “Vector spaces with an order unit”, Indiana Univ. Math. J., 58:3 (2009), 1319–1360 | DOI | MR | Zbl

[36] Perinotti P., Tosini A., Vaglini L., Which entropy for general physical theories?, E-print, 2023, arXiv: 2302.01651 [quant-ph] | DOI

[37] Pisier G., Introduction to operator space theory, LMS Lect. Note Ser., 294, Cambridge Univ. Press, Cambridge, 2003 | DOI | MR | Zbl

[38] Plávala M., “General probabilistic theories: An introduction”, Phys. Rep., 1033 (2023), 1–64 | DOI | MR | Zbl

[39] Ruan Z.-J., “Subspaces of $C^*$-algebras”, J. Funct. Anal., 76:1 (1988), 217–230 | DOI | MR | Zbl

[40] Saitô K., Wright J.D.M., Monotone complete $C^*$-algebras and generic dynamics, Springer Monogr. Math., Springer, London, 2015 | DOI | MR | Zbl

[41] Sakai S., “A characterization of $W^*$-algebras”, Pac. J. Math., 6:4 (1956), 763–773 | DOI | MR | Zbl

[42] Siemon I., Holevo A.S., Werner R.F., “Unbounded generators of dynamical semigroups”, Open Syst. Inf. Dyn., 24:4 (2017), 1740015 | DOI | MR | Zbl

[43] Smith R.R., “Completely bounded maps between $C^*$-algebras”, J. London Math. Soc., 27:1 (1983), 157–166 | DOI | MR | Zbl

[44] Yashin V.I., “The extension of unital completely positive semigroups on operator systems to semigroups on $C^*$-algebras”, Lobachevskii J. Math., 43:7 (2022), 1778–1790 | DOI | MR | Zbl