Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2024_324_a20, author = {Vsevolod I. Yashin}, title = {Arveson's {Extension} {Theorem} for {Conditionally} {Unital} {Completely} {Positive} {Maps}}, journal = {Informatics and Automation}, pages = {277--291}, publisher = {mathdoc}, volume = {324}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a20/} }
Vsevolod I. Yashin. Arveson's Extension Theorem for Conditionally Unital Completely Positive Maps. Informatics and Automation, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 277-291. http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a20/
[1] Aliprantis C.D., Tourky R., Cones and duality, Grad. Stud. Math., 84, Am. Math. Soc., Providence, RI, 2007 | DOI | MR | Zbl
[2] Arendt W., Chernoff P.R., Kato T., “A generalization of dissipativity and positive semigroups”, J. Oper. Theory, 8:1 (1982), 167–180 | MR | Zbl
[3] Arveson W.B., “Subalgebras of $C^*$-algebras”, Acta math., 123 (1969), 141–224 | DOI | MR | Zbl
[4] Arveson W., “The noncommutative Choquet boundary. III: Operator systems in matrix algebras”, Math. Scand., 106:2 (2010), 196–210 | DOI | MR | Zbl
[5] Belton A.C.R., “Introduction to classical and quantum Markov semigroups”, Open quantum systems: A mathematical perspective, Springer, Cham, 2019, 1–54 | DOI | MR
[6] Blecher D.P., Magajna B., “Dual operator systems”, Bull. London Math. Soc., 43:2 (2011), 311–320 | DOI | MR | Zbl
[7] Breuer H.-P., Petruccione F., The theory of open quantum systems, Oxford Univ. Press, Oxford, 2007 | DOI | MR | Zbl
[8] Choi M.-D., “A Schwarz inequality for positive linear maps on $C^*$-algebras”, Ill. J. Math., 18:4 (1974), 565–574 | DOI | MR | Zbl
[9] Choi M.-D., Effros E.G., “Injectivity and operator spaces”, J. Funct. Anal., 24:2 (1977), 156–209 | DOI | MR | Zbl
[10] Connes A., van Suijlekom W.D., “Spectral truncations in noncommutative geometry and operator systems”, Commun. Math. Phys., 383:3 (2021), 2021–2067 | DOI | MR | Zbl
[11] Christensen E., “Generators of semigroups of completely positive maps”, Commun. Math. Phys., 62:2 (1978), 167–171 | DOI | MR | Zbl
[12] Christensen E., Evans D.E., “Cohomology of operator algebras and quantum dynamical semigroups”, J. London Math. Soc., 20:2 (1979), 358–368 | DOI | MR | Zbl
[13] Davidson K.R., Kennedy M., Noncommutative Choquet theory, E-print, 2019, arXiv: 1905.08436 [math.OA] | DOI
[14] Duan R., Severini S., Winter A., “Zero-error communication via quantum channels, noncommutative graphs, and a quantum Lovász number”, IEEE Trans. Inf. Theory, 59:2 (2013), 1164–1174 | DOI | MR | Zbl
[15] Effros E.G., Ruan Z.-J., Operator spaces, LMS Monogr. New Ser., 23, Clarendon Press, Oxford, 2000 | MR | Zbl
[16] Vom Ende F., “Quantum-dynamical semigroups and the church of the larger Hilbert space”, Open Syst. Inf. Dyn., 30:1 (2023), 2350003 | DOI | MR | Zbl
[17] Engel K.-J., Nagel R., One-parameter semigroups for linear evolution equations, Grad. Texts Math., 194, Springer, New York, 2000 | DOI | MR | Zbl
[18] Evans D.E., “Conditionally completely positive maps on operator algebras”, Q. J. Math., 28:3 (1977), 271–283 | DOI | MR | Zbl
[19] Evans D.E., Hanche-Olsen H., “The generators of positive semigroups”, J. Funct. Anal., 32:2 (1979), 207–212 | DOI | MR | Zbl
[20] Fritz T., Netzer T., Thom A., “Spectrahedral containment and operator systems with finite-dimensional realization”, SIAM J. Appl. Algebra Geom., 1:1 (2017), 556–574 | DOI | MR
[21] Hamana M., “Injective envelopes of operator systems”, Publ. Res. Inst. Math. Sci., 15:3 (1979), 773–785 | DOI | MR | Zbl
[22] Helemskii A.Ya., Quantum functional analysis: Non-coordinate approach, Univ. Lect. Ser., 56, Am. Math. Soc., Providence, RI, 2010 | DOI | MR | Zbl
[23] A. S. Holevo, “Conditionally positive-definite functions in quantum probability theory”, J. Sov. Math., 56:5 (1991), 2670–2697 | DOI | MR
[24] A. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, 2nd ed., Ed. Normale, Pisa, 2011 | MR | MR | Zbl
[25] A. S. Holevo, Quantum Systems, Channels, Information: A Mathematical Introduction, De Gruyter, Berlin, 2012 | MR | Zbl
[26] Kadison R.V., A representation theory for commutative topological algebra, Mem. AMS, 7, Am. Math. Soc., Providence, RI, 1951 | DOI | MR | Zbl
[27] Kennedy M., Shamovich E., “Noncommutative Choquet simplices”, Math. Ann., 382:3–4 (2022), 1591–1629 | DOI | MR | Zbl
[28] Kishimoto A., “Dissipations and derivations”, Commun. Math. Phys., 47:1 (1976), 25–32 | DOI | MR | Zbl
[29] Kraus K., States, effects, and operations: Fundamental notions of quantum theory, Lect. Notes Phys., 190, ed. by A. Böhm, J.D. Dollard, W.H. Wootters, Springer, Berlin, 1983 | DOI | MR | Zbl
[30] Krein M.G., “Pro pozitivni aditivni funktsionali v liniinikh normovanikh prostorakh”, Zap. Khark. mat. o-va, 14 (1937), 227–237 | Zbl
[31] Lindblad G., “On the generators of quantum dynamical semigroups”, Commun. Math. Phys., 48:2 (1976), 119–130 | DOI | MR | Zbl
[32] Van Neerven J., The adjoint of a semigroup of linear operators, Lect. Notes Math., 1529, Springer, Berlin, 1992 | DOI | MR | Zbl
[33] Paschke W.L., “Inner product modules over $B^*$-algebras”, Trans. Am. Math. Soc., 182 (1973), 443–468 | DOI | MR | Zbl
[34] Paulsen V., Completely bounded maps and operator algebras, Cambridge Stud. Adv. Math., 78, Cambridge Univ. Press, Cambridge, 2003 | DOI | MR
[35] Paulsen V.I., Tomforde M., “Vector spaces with an order unit”, Indiana Univ. Math. J., 58:3 (2009), 1319–1360 | DOI | MR | Zbl
[36] Perinotti P., Tosini A., Vaglini L., Which entropy for general physical theories?, E-print, 2023, arXiv: 2302.01651 [quant-ph] | DOI
[37] Pisier G., Introduction to operator space theory, LMS Lect. Note Ser., 294, Cambridge Univ. Press, Cambridge, 2003 | DOI | MR | Zbl
[38] Plávala M., “General probabilistic theories: An introduction”, Phys. Rep., 1033 (2023), 1–64 | DOI | MR | Zbl
[39] Ruan Z.-J., “Subspaces of $C^*$-algebras”, J. Funct. Anal., 76:1 (1988), 217–230 | DOI | MR | Zbl
[40] Saitô K., Wright J.D.M., Monotone complete $C^*$-algebras and generic dynamics, Springer Monogr. Math., Springer, London, 2015 | DOI | MR | Zbl
[41] Sakai S., “A characterization of $W^*$-algebras”, Pac. J. Math., 6:4 (1956), 763–773 | DOI | MR | Zbl
[42] Siemon I., Holevo A.S., Werner R.F., “Unbounded generators of dynamical semigroups”, Open Syst. Inf. Dyn., 24:4 (2017), 1740015 | DOI | MR | Zbl
[43] Smith R.R., “Completely bounded maps between $C^*$-algebras”, J. London Math. Soc., 27:1 (1983), 157–166 | DOI | MR | Zbl
[44] Yashin V.I., “The extension of unital completely positive semigroups on operator systems to semigroups on $C^*$-algebras”, Lobachevskii J. Math., 43:7 (2022), 1778–1790 | DOI | MR | Zbl