Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2024_324_a17, author = {A. S. Trushechkin}, title = {Kinetic {State} and {Emergence} of {Markovian} {Dynamics} in {Exactly} {Solvable} {Models} of {Open} {Quantum} {Systems}}, journal = {Informatics and Automation}, pages = {198--224}, publisher = {mathdoc}, volume = {324}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a17/} }
TY - JOUR AU - A. S. Trushechkin TI - Kinetic State and Emergence of Markovian Dynamics in Exactly Solvable Models of Open Quantum Systems JO - Informatics and Automation PY - 2024 SP - 198 EP - 224 VL - 324 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a17/ LA - ru ID - TRSPY_2024_324_a17 ER -
A. S. Trushechkin. Kinetic State and Emergence of Markovian Dynamics in Exactly Solvable Models of Open Quantum Systems. Informatics and Automation, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 198-224. http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a17/
[1] Accardi L., Frigerio A., Lu Y.G., “On the relation between the singular and the weak coupling limits”, Acta appl. math., 26:3 (1992), 197–208 | DOI | MR | Zbl
[2] Accardi L., Lu Y.G., Volovich I., Quantum theory and its stochastic limit, Springer, Berlin, 2002 | DOI | MR | Zbl
[3] Accardi L., Pechen A.N., Volovich I.V., “Quantum stochastic equation for the low density limit”, J. Phys. A: Math. Gen., 35:23 (2002), 4889–4902 | DOI | MR | Zbl
[4] Alicki R., “Master equations for a damped nonlinear oscillator and the validity of the Markovian approximation”, Phys. Rev. A, 40:7 (1989), 4077–4081 | DOI
[5] Alicki R., “Comment on “Reduced dynamics need not be completely positive””, Phys. Rev. Lett., 75:16 (1995), 3020 | DOI | MR
[6] Alicki R., “Pure decoherence in quantum systems”, Open Syst. Inf. Dyn., 11:1 (2004), 53–61 | DOI | MR | Zbl
[7] Alicki R., Lendi K., Quantum dynamical semigroups and applications, Lect. Notes Phys., 717, Springer, Berlin, 2007 | DOI | MR | Zbl
[8] Arai A., Hirokawa M., “On the existence and uniqueness of ground states of a generalized spin-boson model”, J. Funct. Anal., 151:2 (1997), 455–503 | DOI | MR | Zbl
[9] Attal S., Pautrat Y., “From repeated to continuous quantum interactions”, Ann. Henri Poincaré, 7:1 (2006), 59–104 | DOI | MR | Zbl
[10] Becker T., Wu L.-N., Eckardt A., “Lindbladian approximation beyond ultraweak coupling”, Phys. Rev. E, 104:1 (2021), 014110 | DOI | MR
[11] Bloch F., “Generalized theory of relaxation”, Phys. Rev., 105:4 (1957), 1206–1222 | DOI | MR | Zbl
[12] N. N. Bogolyubov, “Problems of a dynamical theory in statistical physics”, Studies in Statistical Mechanics, v. 1, North-Holland, Amsterdam, 1962, 1–118 https://bogolubov.jinr.ru | MR | MR
[13] Bogolyubov N.N., Kineticheskie uravneniya i funktsii Grina v statisticheskoi mekhanike, Preprint No57, In-t fiziki AN AzSSR, Baku, 1977 | MR
[14] Bratteli O., Robinson D.W., Operator algebras and quantum statistical mechanics, v. 1, $C^*$- and $W^*$-algebras. Symmetry groups. Decomposition of states, Springer, Berlin, 1987 ; v. 2, Equilibrium states. Models in quantum statistical mechanics, Springer, Berlin, 1997 | DOI | MR | Zbl | DOI | Zbl
[15] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford Univ. Press, Oxford, 2002 | MR | Zbl
[16] Cattaneo M., Giorgi G.L., Zambrini R., Maniscalco S., “A brief journey through collision models for multipartite open quantum dynamics”, Open Syst. Inf. Dyn., 29:3 (2022), 2250015 | DOI | MR | Zbl
[17] Cheng Y.C., Silbey R.J., “Markovian approximation in the relaxation of open quantum systems”, J. Phys. Chem. B, 109:45 (2005), 21399–21405 | DOI
[18] Ciccarello F., Lorenzo S., Giovannetti V., Palma G.M., “Quantum collision models: Open system dynamics from repeated interactions”, Phys. Rep., 954 (2022), 1–70 | DOI | MR | Zbl
[19] Cresser J.D., Facer C., Coarse-graining in the derivation of Markovian master equations and its significance in quantum thermodynamics, E-print, 2017, arXiv: 1710.09939 [quant-ph] | DOI
[20] D'Abbruzzo A., Cavina V., Giovannetti V., “A time-dependent regularization of the Redfield equation”, SciPost Phys., 15:3 (2023), 117 | DOI | MR
[21] Davidović D., “Completely positive, simple, and possibly highly accurate approximation of the Redfield equation”, Quantum, 4 (2020), 326 | DOI
[22] Davidović D., “Geometric–arithmetic master equation in large and fast open quantum systems”, J. Phys. A: Math. Theor., 55:45 (2022), 455301 | DOI | MR | Zbl
[23] Davies E.B., “Dynamics of a multilevel Wigner–Weisskopf atom”, J. Math. Phys., 15:12 (1974), 2036–2041 | DOI | MR
[24] Davies E.B., “Markovian master equations”, Commun. Math. Phys., 39:2 (1974), 91–110 | DOI | MR | Zbl
[25] Davies E.B., “Markovian master equations. II”, Math. Ann., 219:2 (1976), 147–158 | DOI | MR | Zbl
[26] Dümcke R., “The low density limit for an $N$-level system interacting with a free Bose or Fermi gas”, Commun. Math. Phys., 97:3 (1985), 331–359 | DOI | MR | Zbl
[27] Facchi P., Ligabó M., Lonigro D., “Spectral properties of the singular Friedrichs–Lee Hamiltonian”, J. Math. Phys., 62:3 (2021), 032102 | DOI | MR | Zbl
[28] Farina D., Giovannetti V., “Open-quantum-system dynamics: Recovering positivity of the Redfield equation via the partial secular approximation”, Phys. Rev. A, 100:1 (2019), 012107 | DOI | MR
[29] Filippov S.N., Semin G.N., Pechen A.N., “Quantum master equations for a system interacting with a quantum gas in the low-density limit and for the semiclassical collision model”, Phys. Rev. A, 101:1 (2020), 012114 | DOI | MR
[30] Garraway B.M., “Nonperturbative decay of an atomic system in a cavity”, Phys. Rev. A, 55:3 (1997), 2290–2303 | DOI | MR
[31] Garraway B.M., “Decay of an atom coupled strongly to a reservoir”, Phys. Rev. A, 55:6 (1997), 4636–4639 | DOI
[32] Gorini V., Frigerio A., Verri M., Kossakowski A., Sudarshan E.C.G., “Properties of quantum Markovian master equations”, Rep. Math. Phys., 13:2 (1978), 149–173 | DOI | MR | Zbl
[33] Hartmann R., Strunz W.T., “Accuracy assessment of perturbative master equations: Embracing nonpositivity”, Phys. Rev. A, 101:1 (2020), 012103 | DOI
[34] A. S. Holevo, “Stochastic representations of quantum dynamical semi-groups”, Proc. Steklov Inst. Math., 191 (1992), 145–154 | MR | Zbl
[35] A. S. Holevo, “Quantum stochastic calculus”, J. Sov. Math., 56:5 (1991), 2609–2624 | DOI | MR | Zbl
[36] A. S. Holevo, Statistical Structure of Quantum Theory, Springer, Berlin, 2001 | MR | Zbl
[37] Jeske J., Ing D.J., Plenio M.B., Huelga S.F., Cole J.H., “Bloch–Redfield equations for modeling light-harvesting complexes”, J. Chem. Phys., 142:6 (2015), 064104 | DOI
[38] Jordan T.F., Shaji A., Sudarshan E.C.G., “Dynamics of initially entangled open quantum systems”, Phys. Rev. A, 70:5 (2004), 052110 | DOI | MR | Zbl
[39] Kiršanskas G., Franckié M., Wacker A., “Phenomenological position and energy resolving Lindblad approach to quantum kinetics”, Phys. Rev. B, 97:3 (2018), 035432 | DOI
[40] V. V. Kozlov, “Statistical irreversibility of the Kac reversible circular model”, Regul. Chaotic Dyn., 16:5 (2011), 536–549 | DOI | MR | MR | Zbl
[41] Latune C.L., Sinayskiy I., Petruccione F., “Negative contributions to entropy production induced by quantum coherences”, Phys. Rev. A, 102:4 (2020), 042220 | DOI | MR
[42] Li L., Hall M.J.W., Wiseman H.M., “Concepts of quantum non-Markovianity: a hierarchy”, Phys. Rep., 759 (2018), 1–51 | DOI | MR | Zbl
[43] Lill S., Lonigro D., Self-adjointness and domain of generalized spin–boson models with mild ultraviolet divergences, E-print, 2023, arXiv: 2307.14727 [math-ph] | DOI | MR
[44] Łobejko M., Winczewski M., Suárez G., Alicki R., Horodecki M., Towards reconciliation of completely positive open system dynamics with the equilibration postulate, E-print, 2022, arXiv: 2204.00643 [quant-ph] | DOI
[45] Lonigro D., “Generalized spin–boson models with non-normalizable form factors”, J. Math. Phys., 63:7 (2022), 072105 | DOI | MR | Zbl
[46] Lonigro D., “Renormalization of spin–boson interactions mediated by singular form factors”, Quantum mathematics II: INdAM 2022, Springer INdAM Ser., 58, Springer, Singapore, 2023, 103–122 | DOI | MR
[47] Lonigro D., “Self-adjointness of a class of multi-spin–boson models with ultraviolet divergences”, Math. Phys. Anal. Geom., 26:2 (2023), 15 | DOI | MR | Zbl
[48] Lonigro D., Chruściński D., “Quantum regression in dephasing phenomena”, J. Phys. A: Math. Theor., 55:22 (2022), 225308 | DOI | MR | Zbl
[49] Majenz C., Albash T., Breuer H.-P., Lidar D.A., “Coarse graining can beat the rotating-wave approximation in quantum Markovian master equations”, Phys. Rev. A, 88:1 (2013), 012103 | DOI
[50] McCauley G., Cruikshank B., Bondar D.I., Jacobs K., “Accurate Lindblad-form master equation for weakly damped quantum systems across all regimes”, npj Quantum Inf., 6 (2020), 74 | DOI
[51] Merkli M., “Quantum Markovian master equations: Resonance theory shows validity for all time scales”, Ann. Phys., 412 (2020), 167996 | DOI | MR | Zbl
[52] Merkli M., “Correlation decay and Markovianity in open systems”, Ann. Henri Poincaré, 24 (2023), 751–782 | DOI | MR | Zbl
[53] Mozgunov E., Lidar D., “Completely positive master equation for arbitrary driving and small level spacing”, Quantum, 4 (2020), 227 | DOI
[54] Nathan F., Rudner M.S., “Universal Lindblad equation for open quantum systems”, Phys. Rev. B, 102:11 (2020), 115109 | DOI
[55] Ohya M., Volovich I., Mathematical foundations of quantum information and computation and its applications to nano- and bio-systems, Springer, Dordrecht, 2011 | DOI | MR | Zbl
[56] Open quantum systems I: The Hamiltonian approach, Lect. Notes Math., 1880, ed. by S. Attal, A. Joye, C.-A. Pillet, Springer, Berlin, 2006 | DOI | MR | Zbl
[57] Palma G.M., Suominen K.-A., Ekert A.K., “Quantum computers and dissipation”, Proc. R. Soc. London A, 452 (1996), 567–584 | DOI | MR | Zbl
[58] Palmer P.F., “The singular coupling and weak coupling limits”, J. Math. Phys., 18:3 (1977), 527–529 | DOI | MR
[59] Pechukas P., “Reduced dynamics need not be completely positive”, Phys. Rev. Lett., 73:8 (1994), 1060–1062 | DOI | MR | Zbl
[60] Potts P.P., Kalaee A.A.S., Wacker A., “A thermodynamically consistent Markovian master equation beyond the secular approximation”, New J. Phys., 23 (2021), 123013 | DOI | MR
[61] Ptaszyński K., Esposito M., “Thermodynamics of quantum information flows”, Phys. Rev. Lett., 122:15 (2019), 150603 | DOI | MR
[62] Ptaszyński K., Esposito M., “Post-thermalization via information spreading in open quantum systems”, Phys. Rev. E, 106:1 (2022), 014122 | DOI | MR
[63] Redfield A.G., “On the theory of relaxation processes”, IBM J. Res. Dev., 1:1 (1957), 19–31 | DOI | MR
[64] Redfield A.G., “The theory of relaxation processes”, Adv. Magn. Opt. Reson., 1 (1965), 1–32 | DOI
[65] M. Reed and B. Simon, Methods of Modern Mathematical Physics, v. 2, Fourier Analysis, Self-adjointness, Academic Press, New York, 1975 | MR | MR | Zbl
[66] Rivas Á., “Refined weak-coupling limit: Coherence, entanglement, and non-Markovianity”, Phys. Rev. A, 95:4 (2017), 042104 | DOI
[67] Rivas Á., “Quantum thermodynamics in the refined weak coupling limit”, Entropy, 21:8 (2019), 725 | DOI | MR
[68] Rivas Á., Huelga S.F., Open quantum systems: An introduction, Springer, Berlin, 2012 | DOI | MR | Zbl
[69] Rodríguez-Rosario C.A., Modi K., Aspuru-Guzik A., “Linear assignment maps for correlated system-environment states”, Phys. Rev. A, 81:1 (2010), 012313 | DOI
[70] Schaller G., Brandes T., “Preservation of positivity by dynamical coarse graining”, Phys. Rev. A, 78:2 (2008), 022106 | DOI | MR
[71] Soret A., Cavina V., Esposito M., “Thermodynamic consistency of quantum master equations”, Phys. Rev. A, 106:6 (2022), 062209 | DOI | MR
[72] Suárez A., Silbey R., Oppenheim I., “Memory effects in the relaxation of quantum open systems”, J. Chem. Phys., 97:7 (1992), 5101–5107 | DOI
[73] A. E. Teretenkov, “Pseudomode approach and vibronic non-Markovian phenomena in light-harvesting complexes”, Proc. Steklov Inst. Math., 306 (2019), 242–256 | DOI | DOI | MR | Zbl
[74] Teretenkov A.E., “Non-perturbative effects in corrections to quantum master equations arising in Bogolubov–van Hove limit”, J. Phys. A: Math. Theor., 54:26 (2021), 265302 | DOI | MR | Zbl
[75] Trushechkin A.S., “Vyvod kvantovogo kineticheskogo uravneniya Redfilda i popravok k nemu po metodu Bogolyubova”, Tr. MIAN, 313 (2021), 263–274 | DOI | MR | Zbl
[76] Trushechkin A., “Unified Gorini–Kossakowski–Lindblad–Sudarshan quantum master equation beyond the secular approximation”, Phys. Rev. A, 103:6 (2021), 062226 | DOI | MR
[77] Trushechkin A., “Quantum master equations and steady states for the ultrastrong-coupling limit and the strong-decoherence limit”, Phys. Rev. A, 106:4 (2022), 042209 | DOI | MR
[78] Trushechkin A.S., “Long-term behaviour in an exactly solvable model of pure decoherence and the problem of Markovian embedding”, Mathematics, 12:1 (2024), 1 | DOI
[79] Tupkary D., Dhar A., Kulkarni M., Purkayastha A., “Fundamental limitations in Lindblad descriptions of systems weakly coupled to baths”, Phys. Rev. A, 105:3 (2022), 032208 | DOI | MR
[80] Wangsness R.K., Bloch F., “The dynamical theory of nuclear induction”, Phys. Rev., 89:4 (1953), 728–739 | DOI | Zbl