On the Structure of Postselective Transformations of Quantum States
Informatics and Automation, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 132-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the properties of postselective transformations of quantum states, that is, transformations for which some classical results are declared “successful” while the rest are discarded. We demonstrate that for every postselective transformation there exists a distinguished orthonormal basis for which the transformation reduces to probabilistic blocking of the basis states followed by a deterministic transformation. We also describe a generalization of an arbitrary postselective transformation that corresponds to its partial version with a given success probability.
Keywords: quantum postselective transformations, quantum instrument
Mots-clés : quantum information.
@article{TRSPY_2024_324_a12,
     author = {D. A. Kronberg},
     title = {On the {Structure} of {Postselective} {Transformations} of {Quantum} {States}},
     journal = {Informatics and Automation},
     pages = {132--143},
     publisher = {mathdoc},
     volume = {324},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a12/}
}
TY  - JOUR
AU  - D. A. Kronberg
TI  - On the Structure of Postselective Transformations of Quantum States
JO  - Informatics and Automation
PY  - 2024
SP  - 132
EP  - 143
VL  - 324
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a12/
LA  - ru
ID  - TRSPY_2024_324_a12
ER  - 
%0 Journal Article
%A D. A. Kronberg
%T On the Structure of Postselective Transformations of Quantum States
%J Informatics and Automation
%D 2024
%P 132-143
%V 324
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a12/
%G ru
%F TRSPY_2024_324_a12
D. A. Kronberg. On the Structure of Postselective Transformations of Quantum States. Informatics and Automation, Noncommutative Analysis and Quantum Information Theory, Tome 324 (2024), pp. 132-143. http://geodesic.mathdoc.fr/item/TRSPY_2024_324_a12/

[1] Avanesov A.S., Kronberg D.A., “On eavesdropping strategy for symmetric coherent states quantum cryptography using heterodyne measurement”, Lobachevskii J. Math., 42:10 (2021), 2285–2294 | DOI | MR | Zbl

[2] Croke S., Andersson E., Barnett S.M., Gilson C.R., Jeffers J., “Maximum confidence quantum measurements”, Phys. Rev. Lett., 96:7 (2006), 070401 | DOI

[3] Davies E.B., Lewis J.T., “An operational approach to quantum probability”, Commun. Math. Phys., 17:3 (1970), 239–260 | DOI | MR | Zbl

[4] Dieks D., “Overlap and distinguishability of quantum states”, Phys. Lett. A, 126:5–6 (1988), 303–306 | DOI | MR

[5] Feng Y., Duan R., Ying M., “Unambiguous discrimination between mixed quantum states”, Phys. Rev. A, 70:1 (2004), 012308 | DOI

[6] A. S. Holevo, “Bounds for the quantity of information transmitted by a quantum communication channel”, Probl. Inf. Transm., 9:3 (1973), 177–183 | MR | Zbl

[7] A. S. Holevo, Quantum Systems, Channels, Information: A Mathematical Introduction, 2nd ed., De Gruyter, Berlin, 2019 | MR | Zbl

[8] Ivanovic I.D., “How to differentiate between non-orthogonal states”, Phys. Lett. A, 123:6 (1987), 257–259 | DOI | MR

[9] Kenbaev N.R., Kronberg D.A., “Quantum postselective measurements: Sufficient condition for overcoming the Holevo bound and the role of max-relative entropy”, Phys. Rev. A, 105:1 (2022), 012609 | DOI | MR

[10] Kronberg D.A., “Generalized discrimination between symmetric coherent states for eavesdropping in quantum cryptography”, Lobachevskii J. Math., 41:12 (2020), 2332–2337 | DOI | MR | Zbl

[11] D. A. Kronberg, “Increasing the distinguishability of quantum states with an arbitrary success probability”, Proc. Steklov Inst. Math., 313 (2021), 113–119 | DOI | DOI | MR | Zbl

[12] Kronberg D.A., “Ob uyazvimostyakh kvantovoi kriptografii na geometricheski odnorodnykh kogerentnykh sostoyaniyakh”, Kvantovaya elektronika, 51:10 (2021), 928–937

[13] Kronberg D.A., “Modification of quantum measurements by mapping onto quantum states and classical outcomes”, Lobachevskii J. Math., 43:7 (2022), 1663–1668 | DOI | MR | Zbl

[14] Kronberg D.A., “Success probability for postselective transformations of pure quantum states”, Phys. Rev. A, 106:4 (2022), 042447 | DOI | MR

[15] D. A. Kronberg, “Vulnerability of quantum cryptography with phase–time coding under attenuation conditions”, Theor. Math. Phys., 214:1 (2023), 121–131 | DOI | DOI | MR | Zbl

[16] Kronberg D.A., Nikolaeva A.S., Kurochkin Y.V., Fedorov A.K., “Quantum soft filtering for the improved security analysis of the coherent one-way quantum-key-distribution protocol”, Phys. Rev. A, 101:3 (2020), 032334 | DOI | MR

[17] Peres A., “How to differentiate between non-orthogonal states”, Phys. Lett. A, 128:1–2 (1988), 19 | DOI | MR