Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2023_323_a9, author = {V. G. Krotov}, title = {Interpolation of {Operators} in {Hardy-Type} {Spaces}}, journal = {Informatics and Automation}, pages = {181--195}, publisher = {mathdoc}, volume = {323}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_323_a9/} }
V. G. Krotov. Interpolation of Operators in Hardy-Type Spaces. Informatics and Automation, Theory of Functions of Several Real Variables and Its Applications, Tome 323 (2023), pp. 181-195. http://geodesic.mathdoc.fr/item/TRSPY_2023_323_a9/
[1] Aoki T., “Locally bounded linear topological spaces”, Proc. Imp. Acad. Tokyo, 18:10 (1942), 588–594 | MR | Zbl
[2] V. I. Bogachev, Measure Theory, v. 1, Springer, Berlin, 2007 | MR | Zbl
[3] Coifman R.R., Meyer Y., Stein E.M., “Some new function spaces and their applications to harmonic analysis”, J. Funct. Anal., 62:2 (1985), 304–335 | DOI | MR | Zbl
[4] Fefferman C., Stein E.M., “$H^p$ spaces of several variables”, Acta math., 129 (1972), 137–193 | DOI | MR | Zbl
[5] Grafakos L., Classical Fourier analysis, Grad. Texts Math., 249, 2nd ed., Springer, New York, 2008 | DOI | MR | Zbl
[6] Grafakos L., Classical Fourier analysis, Grad. Texts Math., 249, 3rd ed., Springer, New York, 2014 | MR | Zbl
[7] Grafakos L., Modern Fourier analysis, Grad. Texts Math., 250, 3rd ed., Springer, New York, 2014 | MR | Zbl
[8] Hardy G.H., Littlewood J.E., “A maximal theorem with function-theoretic applications”, Acta math., 54 (1930), 81–116 | DOI | MR
[9] V. G. Krotov, “On the boundary behavior of functions in spaces of Hardy type”, Math. USSR, Izv., 37:2 (1991), 303–320 | DOI | MR | MR | Zbl | Zbl
[10] V. G. Krotov, “Marcinkiewicz interpolation theorem for spaces of Hardy type”, Math. Notes, 113:1–2 (2023), 306–310 | DOI | DOI | MR | MR | Zbl
[11] Liang Y.Y., Liu L.G., Yang D.C., “An off-diagonal Marcinkiewicz interpolation theorem on Lorentz spaces”, Acta math. Sin. Engl. Ser., 27:8 (2011), 1477–1488 | DOI | MR | Zbl
[12] Lorentz G.G., “Some new functional spaces”, Ann. Math. Ser. 2, 51:1 (1950), 37–55 | DOI | MR | Zbl
[13] Marcinkiewicz J., “Sur l'interpolation d'operations”, C. r. Acad. sci. Paris, 208 (1939), 1272–1273 | Zbl
[14] Pipher J., Verchota G.C., “Dilation invariant estimates and the boundary Gårding inequality for higher order elliptic operators”, Ann. Math. Ser. 2, 142:1 (1995), 1–38 | DOI | MR | Zbl
[15] Rolewicz S., Metric linear spaces, Math. Appl. East Eur. Ser., 20, 2nd ed., D. Reidel Publ. Co., Dordrecht, 1985 | MR | Zbl
[16] W. Rudin, Function Theory in the Unit Ball of $\mathbb C^n$, Springer, Berlin, 1980 | MR | MR
[17] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, NJ, 1970 | MR | Zbl
[18] Stein E.M., Weiss G., “An extension of a theorem of Marcinkiewicz and some of its applications”, J. Math. Mech., 8:2 (1959), 263–284 | MR | Zbl
[19] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, NJ, 1971 | MR | Zbl
[20] Verchota G., “The Dirichlet problem for the polyharmonic equation in Lipschitz domains”, Indiana Univ. Math. J., 39:3 (1990), 671–702 | DOI | MR | Zbl
[21] Zygmund A., “On a theorem of Marcinkiewicz concerning interpolation of operations”, J. math. pures appl., 35 (1956), 223–248 | MR | Zbl
[22] A. Zygmund, Trigonometric Series, v. 2, Univ. Press, Cambridge, 1959 | MR | Zbl