Trace and Extension Theorems for Homogeneous Sobolev and Besov Spaces for Unbounded Uniform Domains in Metric Measure Spaces
Informatics and Automation, Theory of Functions of Several Real Variables and Its Applications, Tome 323 (2023), pp. 107-126

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we fix $1\le p\infty $ and consider $(\Omega ,d,\mu )$ to be an unbounded, locally compact, non-complete metric measure space equipped with a doubling measure $\mu $ supporting a $p$-Poincaré inequality such that $\Omega $ is a uniform domain in its completion $\overline \Omega $. We realize the trace of functions in the Dirichlet–Sobolev space $D^{1,p}(\Omega )$ on the boundary $\partial \Omega $ as functions in the homogeneous Besov space $HB^\alpha _{p,p}(\partial \Omega )$ for suitable $\alpha $; here, $\partial \Omega $ is equipped with a non-atomic Borel regular measure $\nu $. We show that if $\nu $ satisfies a $\theta $-codimensional condition with respect to $\mu $ for some $0\theta $, then there is a bounded linear trace operator $T:D^{1,p}(\Omega )\to HB^{1-\theta /p}(\partial \Omega )$ and a bounded linear extension operator $E:HB^{1-\theta /p}(\partial \Omega )\to D^{1,p}(\Omega )$ that is a right-inverse of $T$.
Mots-clés : Besov spaces, traces
Keywords: Newton–Sobolev spaces, unbounded uniform domain, doubling measure, Poincaré inequality.
@article{TRSPY_2023_323_a5,
     author = {Ryan Gibara and Nageswari Shanmugalingam},
     title = {Trace and {Extension} {Theorems} for {Homogeneous} {Sobolev} and {Besov} {Spaces} for {Unbounded} {Uniform} {Domains} in {Metric} {Measure} {Spaces}},
     journal = {Informatics and Automation},
     pages = {107--126},
     publisher = {mathdoc},
     volume = {323},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_323_a5/}
}
TY  - JOUR
AU  - Ryan Gibara
AU  - Nageswari Shanmugalingam
TI  - Trace and Extension Theorems for Homogeneous Sobolev and Besov Spaces for Unbounded Uniform Domains in Metric Measure Spaces
JO  - Informatics and Automation
PY  - 2023
SP  - 107
EP  - 126
VL  - 323
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_323_a5/
LA  - ru
ID  - TRSPY_2023_323_a5
ER  - 
%0 Journal Article
%A Ryan Gibara
%A Nageswari Shanmugalingam
%T Trace and Extension Theorems for Homogeneous Sobolev and Besov Spaces for Unbounded Uniform Domains in Metric Measure Spaces
%J Informatics and Automation
%D 2023
%P 107-126
%V 323
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_323_a5/
%G ru
%F TRSPY_2023_323_a5
Ryan Gibara; Nageswari Shanmugalingam. Trace and Extension Theorems for Homogeneous Sobolev and Besov Spaces for Unbounded Uniform Domains in Metric Measure Spaces. Informatics and Automation, Theory of Functions of Several Real Variables and Its Applications, Tome 323 (2023), pp. 107-126. http://geodesic.mathdoc.fr/item/TRSPY_2023_323_a5/