Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2023_323_a5, author = {Ryan Gibara and Nageswari Shanmugalingam}, title = {Trace and {Extension} {Theorems} for {Homogeneous} {Sobolev} and {Besov} {Spaces} for {Unbounded} {Uniform} {Domains} in {Metric} {Measure} {Spaces}}, journal = {Informatics and Automation}, pages = {107--126}, publisher = {mathdoc}, volume = {323}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_323_a5/} }
TY - JOUR AU - Ryan Gibara AU - Nageswari Shanmugalingam TI - Trace and Extension Theorems for Homogeneous Sobolev and Besov Spaces for Unbounded Uniform Domains in Metric Measure Spaces JO - Informatics and Automation PY - 2023 SP - 107 EP - 126 VL - 323 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2023_323_a5/ LA - ru ID - TRSPY_2023_323_a5 ER -
%0 Journal Article %A Ryan Gibara %A Nageswari Shanmugalingam %T Trace and Extension Theorems for Homogeneous Sobolev and Besov Spaces for Unbounded Uniform Domains in Metric Measure Spaces %J Informatics and Automation %D 2023 %P 107-126 %V 323 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2023_323_a5/ %G ru %F TRSPY_2023_323_a5
Ryan Gibara; Nageswari Shanmugalingam. Trace and Extension Theorems for Homogeneous Sobolev and Besov Spaces for Unbounded Uniform Domains in Metric Measure Spaces. Informatics and Automation, Theory of Functions of Several Real Variables and Its Applications, Tome 323 (2023), pp. 107-126. http://geodesic.mathdoc.fr/item/TRSPY_2023_323_a5/
[1] Aikawa H., Shanmugalingam N., “Carleson type estimates for $p$-harmonic functions and the conformal Martin boundary of John domains in metric measure spaces”, Michigan Math. J., 53:1 (2005), 165–188 | DOI | MR | Zbl
[2] Alonso-Ruiz P., Baudoin F., Chen L., Rogers L., Shanmugalingam N., Teplyaev A., “Besov class via heat semigroup on Dirichlet spaces. III: BV functions and sub-Gaussian heat kernel estimates”, Calc. Var. Partial Diff. Eqns., 60:5 (2021), 170 | DOI | MR | Zbl
[3] Besov O.V., “O nekotorom semeistve funktsionalnykh prostranstv. Teoremy vlozheniya i prodolzheniya”, DAN SSSR, 126:6 (1959), 1163–1165 | Zbl
[4] Besov O.V., “Issledovanie odnogo semeistva funktsionalnykh prostranstv v svyazi s teoremami vlozheniya i prodolzheniya”, Tr. MIAN, 60 (1961), 42–81 | Zbl
[5] O. V. Besov, “The behavior of differentiable functions on a nonsmooth surface”, Proc. Steklov Inst. Math., 117 (1974), 1–9 | MR | Zbl | Zbl
[6] O. V. Besov, “On traces on a nonsmooth surface of classes of differentiable functions”, Proc. Steklov Inst. Math., 117 (1974), 11–23 | MR | Zbl | Zbl
[7] O. V. Besov, “Estimates of moduli of smoothness on domains, and imbedding theorems”, Proc. Steklov Inst. Math., 117 (1974), 25–53 | MR | Zbl | Zbl
[8] Besov O.V., Ilin V.P., Kudryavtsev L.D., Lizorkin P.I., Nikolskii S.M., “Teoriya vlozheniya klassov differentsiruemykh funktsii mnogikh peremennykh”, Differentsialnye uravneniya s chastnymi proizvodnymi: Tr. simpoz., posv. 60-letiyu akad. S.L. Soboleva, Nauka, M., 1970, 38–63
[9] O. V. Besov, V. P. Il'in, and S. M. Nikol'skii, Integral Representations of Functions and Imbedding Theorems, v. 1, 2, 1st ed., J. Wiley Sons, New York, 1978 | MR | MR | Zbl
[10] Björn A., Björn J., Shanmugalingam N., “Extension and trace results for doubling metric measure spaces and their hyperbolic fillings”, J. Math. Pures Appl. Ser. 9, 159 (2022), 196–249 | DOI | MR | Zbl
[11] Björn A., Björn J., Shanmugalingam N., “Classification of metric measure spaces and their ends using $p$-harmonic functions”, Ann. Fenn. math., 47:2 (2022), 1025–1052 | DOI | MR | Zbl
[12] Björn J., Shanmugalingam N., “Poincaré inequalities, uniform domains and extension properties for Newton–Sobolev functions in metric spaces”, J. Math. Anal. Appl., 332:1 (2007), 190–208 | DOI | MR | Zbl
[13] Bourdon M., Pajot H., “Cohomologie $\ell _p$ et espaces de Besov”, J. reine angew. Math., 558 (2003), 85–108 | MR | Zbl
[14] Yu. D. Burago and V. G. Maz'ya, Potential Theory and Function Theory for Irregular Regions, Semin. Math., Steklov Math. Inst., Leningrad, 3, Consultants Bureau, New York, 1969 | MR
[15] Capogna L., Kline J., Korte R., Shanmugalingam N., Snipes M., Neumann problems for $p$-harmonic functions, and induced nonlocal operators in metric measure spaces, E-print, 2022, arXiv: 2204.00571 [math.AP]
[16] Gagliardo E., “Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in $n$ variabili”, Rend. Semin. Mat. Univ. Padova, 27 (1957), 284–305 | MR | Zbl
[17] Gibara R., Korte R., Shanmugalingam N., “Solving a Dirichlet problem on unbounded domains via a conformal transformation”, Math. Ann., 2023 ; arXiv: 2209.09773 [math.AP] | DOI
[18] Gogatishvili A., Koskela P., Shanmugalingam N., “Interpolation properties of Besov spaces defined on metric spaces”, Math. Nachr., 283:2 (2010), 215–231 | DOI | MR | Zbl
[19] Hajłasz P., Martio O., “Traces of Sobolev functions on fractal type sets and characterization of extension domains”, J. Funct. Anal., 143:1 (1997), 221–246 | DOI | MR | Zbl
[20] Heinonen J., Koskela P., “Quasiconformal maps in metric spaces with controlled geometry”, Acta math., 181:1 (1998), 1–61 | DOI | MR | Zbl
[21] Heinonen J., Koskela P., Shanmugalingam N., Tyson J.T., Sobolev spaces on metric measure spaces: An approach based on upper gradients, New Math. Monogr., 27, Cambridge Univ. Press, Cambridge, 2015 | MR | Zbl
[22] Jonsson A., Wallin H., “The trace to subsets of $R^n$ of Besov spaces in the general case”, Anal. Math., 6 (1980), 223–254 | DOI | MR | Zbl
[23] Jonsson A., Wallin H., Function spaces on subsets of $\mathbb {R}^n$, Math. Rep., 2, Pt. 1, Harwood, Chur, 1984 | MR
[24] Karadzhov G.E., “Ob interpolyatsii mezhdu prostranstvami tipa prostranstva O.V. Besova”, God. Sofij. Univ. Fak. Mat. Mekh, 67 (1976), 431–450 | Zbl
[25] Kinnunen J., Korte R., Shanmugalingam N., Tuominen H., “Lebesgue points and capacities via the boxing inequality in metric spaces”, Indiana Univ. Math. J., 57:1 (2008), 401–430 | DOI | MR | Zbl
[26] Kinnunen J., Latvala V., “Lebesgue points for Sobolev functions on metric spaces”, Rev. Mat. Iberoamer., 18:3 (2002), 685–700 | DOI | MR | Zbl
[27] Koskela P., MacManus P., “Quasiconformal mappings and Sobolev spaces”, Stud. Math., 131:1 (1998), 1–17 | MR | Zbl
[28] Lehrbäck J., Shanmugalingam N., Potential theory and quasisymmetric maps between compact Ahlfors regular metric measure spaces via Besov functions: Preliminary, E-print, 2022, arXiv: 2210.01095 [math.MG]
[29] Malý L., Trace and extension theorems for Sobolev-type functions in metric spaces, E-print, 2017, arXiv: 1704.06344 [math.MG]
[30] Malý L., Shanmugalingam N., Snipes M., “Trace and extension theorems for functions of bounded variation”, Ann. Sc. Norm. Super. Pisa. Cl. Sci. Ser. 5, 18:1 (2018), 313–341 | MR | Zbl
[31] Martio O., Sarvas J., “Injectivity theorems in plane and space”, Ann. Acad. sci. Fenn. Ser. A I. Math., 4:2 (1979), 383–401 | DOI | MR | Zbl
[32] Maz'ya V., Sobolev spaces with applications to elliptic partial differential equations, Grundl. Math. Wiss., 342, 2nd ed., Springer, Berlin, 2011 | MR | Zbl
[33] S. M. Nikol'skii, “Inequalities for entire functions of finite degree and their application to the theory of differentiable functions of several variables”, Am. Math. Soc., Transl., Ser. 2,, 80 (1969), 1–38 | Zbl | Zbl
[34] Peetre J., “A counter-example connected with Gagliardo's trace theorem”, Commentationes mathematicae: Tomus specialis in honorem Ladislai Orlicz, v. II, PWN, Warsaw, 1979, 277–282 | MR
[35] Shvartsman P., “On the boundary values of Sobolev $W_p^1$-functions”, Adv. Math., 225:4 (2010), 2162–2221 ; Tribel Kh., Teoriya funktsionalnykh prostranstv, Mir, M., 1986 | DOI | MR | Zbl
[36] H. Triebel, Theory of Function Spaces, Monogr. Math., 78, Birkhäuser, Basel, 1983 | MR | Zbl
[37] S. K. Vodopyanov and A. I. Tyulenev, “Sobolev $W^{1,p}$-spaces on $d$-thick closed subsets of $\mathbb R^n$”, Sb. Math., 211:6 (2020), 786–837 | DOI | DOI | MR | Zbl
[38] Yoshikawa A., “Remarks on the theory of interpolation spaces”, J. Fac. Sci. Univ. Tokyo. Sect. I, 15 (1968), 209–251 | MR | Zbl