On Embedding of Besov Spaces of Zero Smoothness into Lorentz Spaces
Informatics and Automation, Theory of Functions of Several Real Variables and Its Applications, Tome 323 (2023), pp. 204-212.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the zero smoothness Besov space $B_{p,q}^{0,1}$ does not embed into the Lorentz space $L_{p,q}$ unless $p=q$; here $p,q\in (1,\infty )$. This answers in the negative a question posed by O. V. Besov.
Mots-clés : Besov space
Keywords: embedding theorem.
@article{TRSPY_2023_323_a11,
     author = {D. M. Stolyarov},
     title = {On {Embedding} of {Besov} {Spaces} of {Zero} {Smoothness} into {Lorentz} {Spaces}},
     journal = {Informatics and Automation},
     pages = {204--212},
     publisher = {mathdoc},
     volume = {323},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_323_a11/}
}
TY  - JOUR
AU  - D. M. Stolyarov
TI  - On Embedding of Besov Spaces of Zero Smoothness into Lorentz Spaces
JO  - Informatics and Automation
PY  - 2023
SP  - 204
EP  - 212
VL  - 323
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_323_a11/
LA  - ru
ID  - TRSPY_2023_323_a11
ER  - 
%0 Journal Article
%A D. M. Stolyarov
%T On Embedding of Besov Spaces of Zero Smoothness into Lorentz Spaces
%J Informatics and Automation
%D 2023
%P 204-212
%V 323
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_323_a11/
%G ru
%F TRSPY_2023_323_a11
D. M. Stolyarov. On Embedding of Besov Spaces of Zero Smoothness into Lorentz Spaces. Informatics and Automation, Theory of Functions of Several Real Variables and Its Applications, Tome 323 (2023), pp. 204-212. http://geodesic.mathdoc.fr/item/TRSPY_2023_323_a11/

[1] O. V. Besov, “Investigation of a family of function spaces in connection with theorems of imbedding and extension”, Am. Math. Soc. Transl., Ser. 2,, 40 (1964), 85–126 | Zbl | Zbl

[2] O. V. Besov, “On spaces of functions of smoothness zero”, Sb. Math., 203:8 (2012), 1077–1090 | DOI | DOI | MR | MR | Zbl

[3] O. V. Besov, “To the Sobolev embedding theorem for the limiting exponent”, Proc. Steklov Inst. Math., 284 (2014), 81–96 | DOI | DOI | MR | MR | Zbl

[4] O. V. Besov, V. P. Il'in, and S. M. Nikol'skii, Integral Representations of Functions and Imbedding Theorems, J. Wiley Sons, New York, 1979 | MR | Zbl

[5] Caetano A.M., Gogatishvili A., Opic B., “Sharp embeddings of Besov spaces involving only logarithmic smoothness”, J. Approx. Theory, 152:2 (2008), 188–214 | DOI | MR | Zbl

[6] Caetano A.M., Gogatishvili A., Opic B., “Embeddings and the growth envelope of Besov spaces involving only slowly varying smoothness”, J. Approx. Theory, 163:10 (2011), 1373–1399 | DOI | MR | Zbl

[7] Cobos F., Dom\'{ı}nguez Ó., “Approximation spaces, limiting interpolation and Besov spaces”, J. Approx. Theory, 189 (2015), 43–66 | DOI | MR | Zbl

[8] Cobos F., Dom\'{ı}nguez Ó., “On Besov spaces of logarithmic smoothness and Lipschitz spaces”, J. Math. Anal. Appl., 425:1 (2015), 71–84 | DOI | MR | Zbl

[9] Dom\'{ı}nguez O., Tikhonov S., Function spaces of logarithmic smoothness: Embeddings and characterizations, Mem. AMS, 282, no. 1393, Amer. Math. Soc., Providence, RI, 2023 | MR

[10] M. L. Goldman, “On imbedding generalized Nikol'skii–Besov spaces in Lorentz spaces”, Proc. Steklov Inst. Math., 172 (1987), 143–154 | MR | Zbl | Zbl

[11] Goldman M.L., “Rearrangement invariant envelopes of generalized Besov, Sobolev, and Calderon spaces”, The interaction of analysis and geometry: Int. Sch.-Conf. on Analysis and Geometry, Novosibirsk, 2004, Contemp. Math., 424, Am. Math. Soc., Providence, RI, 2007, 53–81 | DOI | MR | Zbl

[12] Grafakos L., Modern Fourier analysis, Grad. Texts Math., 250, Springer, New York, 2009 | DOI | MR | Zbl

[13] Hernandez F., Raiţă B., Spector D., “Endpoint $L^1$ estimates for Hodge systems”, Math. Ann., 385:3–4 (2023), 1923–1946 | DOI | MR | Zbl

[14] Yu. V. Netrusov, “Imbedding theorems of Besov spaces in Banach lattices”, J. Sov. Math., 47:6 (1989), 2871–2881 | DOI | MR | Zbl | Zbl

[15] Peetre J., New thoughts on Besov spaces, Math. Dept., Duke Univ., Durham, 1976 | MR | Zbl

[16] Seeger A., Trebels W., “Embeddings for spaces of Lorentz–Sobolev type”, Math. Ann., 373:3–4 (2019), 1017–1056 | DOI | MR | Zbl

[17] Stein E.M., Harmonic analysis: Real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl

[18] D. M. Stolyarov, “Hardy–Littlewood–Sobolev inequality for $p=1$”, Sb. Math., 213:6 (2022), 844–889 | DOI | DOI | MR