On Embedding of Besov Spaces of Zero Smoothness into Lorentz Spaces
Informatics and Automation, Theory of Functions of Several Real Variables and Its Applications, Tome 323 (2023), pp. 204-212

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that the zero smoothness Besov space $B_{p,q}^{0,1}$ does not embed into the Lorentz space $L_{p,q}$ unless $p=q$; here $p,q\in (1,\infty )$. This answers in the negative a question posed by O. V. Besov.
Mots-clés : Besov space
Keywords: embedding theorem.
@article{TRSPY_2023_323_a11,
     author = {D. M. Stolyarov},
     title = {On {Embedding} of {Besov} {Spaces} of {Zero} {Smoothness} into {Lorentz} {Spaces}},
     journal = {Informatics and Automation},
     pages = {204--212},
     publisher = {mathdoc},
     volume = {323},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_323_a11/}
}
TY  - JOUR
AU  - D. M. Stolyarov
TI  - On Embedding of Besov Spaces of Zero Smoothness into Lorentz Spaces
JO  - Informatics and Automation
PY  - 2023
SP  - 204
EP  - 212
VL  - 323
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_323_a11/
LA  - ru
ID  - TRSPY_2023_323_a11
ER  - 
%0 Journal Article
%A D. M. Stolyarov
%T On Embedding of Besov Spaces of Zero Smoothness into Lorentz Spaces
%J Informatics and Automation
%D 2023
%P 204-212
%V 323
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_323_a11/
%G ru
%F TRSPY_2023_323_a11
D. M. Stolyarov. On Embedding of Besov Spaces of Zero Smoothness into Lorentz Spaces. Informatics and Automation, Theory of Functions of Several Real Variables and Its Applications, Tome 323 (2023), pp. 204-212. http://geodesic.mathdoc.fr/item/TRSPY_2023_323_a11/