Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2023_323_a11, author = {D. M. Stolyarov}, title = {On {Embedding} of {Besov} {Spaces} of {Zero} {Smoothness} into {Lorentz} {Spaces}}, journal = {Informatics and Automation}, pages = {204--212}, publisher = {mathdoc}, volume = {323}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_323_a11/} }
D. M. Stolyarov. On Embedding of Besov Spaces of Zero Smoothness into Lorentz Spaces. Informatics and Automation, Theory of Functions of Several Real Variables and Its Applications, Tome 323 (2023), pp. 204-212. http://geodesic.mathdoc.fr/item/TRSPY_2023_323_a11/
[1] O. V. Besov, “Investigation of a family of function spaces in connection with theorems of imbedding and extension”, Am. Math. Soc. Transl., Ser. 2,, 40 (1964), 85–126 | Zbl | Zbl
[2] O. V. Besov, “On spaces of functions of smoothness zero”, Sb. Math., 203:8 (2012), 1077–1090 | DOI | DOI | MR | MR | Zbl
[3] O. V. Besov, “To the Sobolev embedding theorem for the limiting exponent”, Proc. Steklov Inst. Math., 284 (2014), 81–96 | DOI | DOI | MR | MR | Zbl
[4] O. V. Besov, V. P. Il'in, and S. M. Nikol'skii, Integral Representations of Functions and Imbedding Theorems, J. Wiley Sons, New York, 1979 | MR | Zbl
[5] Caetano A.M., Gogatishvili A., Opic B., “Sharp embeddings of Besov spaces involving only logarithmic smoothness”, J. Approx. Theory, 152:2 (2008), 188–214 | DOI | MR | Zbl
[6] Caetano A.M., Gogatishvili A., Opic B., “Embeddings and the growth envelope of Besov spaces involving only slowly varying smoothness”, J. Approx. Theory, 163:10 (2011), 1373–1399 | DOI | MR | Zbl
[7] Cobos F., Dom\'{ı}nguez Ó., “Approximation spaces, limiting interpolation and Besov spaces”, J. Approx. Theory, 189 (2015), 43–66 | DOI | MR | Zbl
[8] Cobos F., Dom\'{ı}nguez Ó., “On Besov spaces of logarithmic smoothness and Lipschitz spaces”, J. Math. Anal. Appl., 425:1 (2015), 71–84 | DOI | MR | Zbl
[9] Dom\'{ı}nguez O., Tikhonov S., Function spaces of logarithmic smoothness: Embeddings and characterizations, Mem. AMS, 282, no. 1393, Amer. Math. Soc., Providence, RI, 2023 | MR
[10] M. L. Goldman, “On imbedding generalized Nikol'skii–Besov spaces in Lorentz spaces”, Proc. Steklov Inst. Math., 172 (1987), 143–154 | MR | Zbl | Zbl
[11] Goldman M.L., “Rearrangement invariant envelopes of generalized Besov, Sobolev, and Calderon spaces”, The interaction of analysis and geometry: Int. Sch.-Conf. on Analysis and Geometry, Novosibirsk, 2004, Contemp. Math., 424, Am. Math. Soc., Providence, RI, 2007, 53–81 | DOI | MR | Zbl
[12] Grafakos L., Modern Fourier analysis, Grad. Texts Math., 250, Springer, New York, 2009 | DOI | MR | Zbl
[13] Hernandez F., Raiţă B., Spector D., “Endpoint $L^1$ estimates for Hodge systems”, Math. Ann., 385:3–4 (2023), 1923–1946 | DOI | MR | Zbl
[14] Yu. V. Netrusov, “Imbedding theorems of Besov spaces in Banach lattices”, J. Sov. Math., 47:6 (1989), 2871–2881 | DOI | MR | Zbl | Zbl
[15] Peetre J., New thoughts on Besov spaces, Math. Dept., Duke Univ., Durham, 1976 | MR | Zbl
[16] Seeger A., Trebels W., “Embeddings for spaces of Lorentz–Sobolev type”, Math. Ann., 373:3–4 (2019), 1017–1056 | DOI | MR | Zbl
[17] Stein E.M., Harmonic analysis: Real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl
[18] D. M. Stolyarov, “Hardy–Littlewood–Sobolev inequality for $p=1$”, Sb. Math., 213:6 (2022), 844–889 | DOI | DOI | MR