Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TRSPY_2023_322_a9, author = {A. T. Il'ichev}, title = {Convective {Modulation} {Instability} of the {Radiation} of the {Periodic} {Component} in the {Case} of {Resonance} of {Long} and {Short} {Waves}}, journal = {Informatics and Automation}, pages = {124--132}, publisher = {mathdoc}, volume = {322}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a9/} }
TY - JOUR AU - A. T. Il'ichev TI - Convective Modulation Instability of the Radiation of the Periodic Component in the Case of Resonance of Long and Short Waves JO - Informatics and Automation PY - 2023 SP - 124 EP - 132 VL - 322 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a9/ LA - ru ID - TRSPY_2023_322_a9 ER -
%0 Journal Article %A A. T. Il'ichev %T Convective Modulation Instability of the Radiation of the Periodic Component in the Case of Resonance of Long and Short Waves %J Informatics and Automation %D 2023 %P 124-132 %V 322 %I mathdoc %U http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a9/ %G ru %F TRSPY_2023_322_a9
A. T. Il'ichev. Convective Modulation Instability of the Radiation of the Periodic Component in the Case of Resonance of Long and Short Waves. Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 124-132. http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a9/
[1] Akylas T.R., Grimshaw R.H.J., “Solitary internal waves with oscillatory tails”, J. Fluid Mech., 242 (1992), 279–298 | DOI | MR | Zbl
[2] Bakholdin I., Il'ichev A., “Radiation and modulational instability described by the fifth-order Korteweg–de Vries equation”, Mathematical problems in the theory of water waves: Proc. Workshop (Luminy, 1995), Contemp. Math., 200, Amer. Math. Soc., Providence, RI, 1996, 1–15 | DOI | MR | Zbl
[3] Bakholdin I., Il'ichev A., “Solitary-wave decay in a cold plasma”, J. Plasma Phys., 60:3 (1998), 569–580 | DOI
[4] Bakholdin I.B., Ilichev A.T., “Fast magnetosonic solitonic structures in a quasi-neutral collision-free finite-beta plasma”, Wave Motion, 112 (2022), 102936 | DOI | MR
[5] Benilov E.S., Grimshaw R., Kuznetsova E.P., “The generation of radiating waves in a singularly-perturbed Korteweg–de Vries equation”, Physica D, 69:3–4 (1993), 270–278 | DOI | MR | Zbl
[6] Benjamin T.B., Feir J.E., “The disintegration of wave trains on deep water. Part 1: Theory”, J. Fluid Mech., 27:3 (1967), 417–430 | DOI | Zbl
[7] E. T. Copson, Asymptotic Expansions, Cambridge Tracts Math. Math. Phys., 55, Univ. Press, Cambridge, 1965 | MR | Zbl
[8] Dias F., Il'ichev A., “Interfacial waves with free-surface boundary conditions: An approach via a model equation”, Physica D, 150:3–4 (2001), 278–300 | DOI | MR | Zbl
[9] Grimshaw R., Malomed B., Benilov E., “Solitary waves with damped oscillatory tails: An analysis of the fifth-order Korteweg–de Vries equation”, Physica D, 77:4 (1994), 473–485 | DOI | MR | Zbl
[10] Haragus M., Lombardi E., Scheel A., “Spectral stability of wave trains in the Kawahara equation”, J. Math. Fluid Mech., 8:4 (2006), 482–509 | DOI | MR | Zbl
[11] Il'ichev A., “Steady waves in a cold plasma”, J. Plasma Phys., 55:2 (1996), 181–194 | DOI
[12] A. T. Il'ichev, “Solitary waves in media with dispersion and dissipation (a review)”, Fluid Dyn., 35:2 (2000), 157–176 | DOI | Zbl
[13] Ilichev A.T., Uedinennye volny v modelyakh gidromekhaniki, Fizmatlit, M., 2003
[14] A. T. Il'ichev and A. V. Marchenko, “Propagation of long nonlinear waves in a ponderable fluid beneath an ice sheet”, Fluid Dyn., 24:1 (1989), 73–79 | DOI | MR | Zbl
[15] Iooss G., Kirchgässner K., “Water waves for small surface tension: An approach via normal form”, Proc. R. Soc. Edinburgh. Sect. A, 122:3–4 (1992), 267–299 | DOI | MR | Zbl
[16] V. I. Karpman, Non-Linear Waves in Dispersive Media, Pergamon, Oxford, 1975 | MR
[17] Lombardi E., “Orbits homoclinic to exponentially small periodic orbits for a class of reversible systems. Application to water waves”, Arch. Ration. Mech. Anal., 137:3 (1997), 227–304 | DOI | MR | Zbl
[18] Mielke A., “Reduction of quasilinear elliptic equations in cylindrical domains with applications”, Math. Methods Appl. Sci., 10:1 (1988), 51–66 | DOI | MR | Zbl
[19] Mielke A., “Homoclinic and heteroclinic solutions in two-phase flow”, Structure and dynamics of nonlinear waves in fluids: Proc. IUTAM/ISIMM Symp. (Hannover, 1994), Adv. Ser. Nonlinear Dyn., 7, World Scientific, Singapore, 1995, 353–362 | MR | Zbl
[20] Sulem C., Sulem P.-L., The nonlinear Schrödinger equation: Self-focusing and wave collapse, Appl. Math. Sci., 139, Springer, New York, 1999 | MR | Zbl
[21] Sun S.M., “Existence of a generalized solitary wave solution for water with positive Bond number less than $1/3$”, J. Math. Anal. Appl., 156:2 (1991), 471–504 | DOI | MR | Zbl
[22] Sun S.M., Shen M.C., “Exact theory of generalized solitary waves in a two-layer liquid in the absence of surface tension”, J. Math. Anal. Appl., 180:1 (1993), 245–274 | DOI | MR | Zbl