Convective Modulation Instability of the Radiation of the Periodic Component in the Case of Resonance of Long and Short Waves
Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 124-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of the paper is a theorem stating that the modulation instability of a carrier periodic wave of small (but finite) amplitude propagating in an arbitrary dispersive medium may only be convective in a reference frame moving at a velocity that differs finitely from the group velocity of this wave. The application of this result to the radiation of a resonant wave by a soliton-like “core” is discussed. Such radiation occurs in media where classical solitary waves are replaced with generalized solitary waves as a result of linear resonance of long and short waves. Generalized solitary waves are traveling waves that form a homoclinic structure doubly asymptotic to a periodic wave.
Keywords: radiation of a resonant wave, convective modulation instability, central manifold, reduced system of equations, generalized solitary wave.
@article{TRSPY_2023_322_a9,
     author = {A. T. Il'ichev},
     title = {Convective {Modulation} {Instability} of the {Radiation} of the {Periodic} {Component} in the {Case} of {Resonance} of {Long} and {Short} {Waves}},
     journal = {Informatics and Automation},
     pages = {124--132},
     publisher = {mathdoc},
     volume = {322},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a9/}
}
TY  - JOUR
AU  - A. T. Il'ichev
TI  - Convective Modulation Instability of the Radiation of the Periodic Component in the Case of Resonance of Long and Short Waves
JO  - Informatics and Automation
PY  - 2023
SP  - 124
EP  - 132
VL  - 322
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a9/
LA  - ru
ID  - TRSPY_2023_322_a9
ER  - 
%0 Journal Article
%A A. T. Il'ichev
%T Convective Modulation Instability of the Radiation of the Periodic Component in the Case of Resonance of Long and Short Waves
%J Informatics and Automation
%D 2023
%P 124-132
%V 322
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a9/
%G ru
%F TRSPY_2023_322_a9
A. T. Il'ichev. Convective Modulation Instability of the Radiation of the Periodic Component in the Case of Resonance of Long and Short Waves. Informatics and Automation, Modern Methods of Mechanics, Tome 322 (2023), pp. 124-132. http://geodesic.mathdoc.fr/item/TRSPY_2023_322_a9/

[1] Akylas T.R., Grimshaw R.H.J., “Solitary internal waves with oscillatory tails”, J. Fluid Mech., 242 (1992), 279–298 | DOI | MR | Zbl

[2] Bakholdin I., Il'ichev A., “Radiation and modulational instability described by the fifth-order Korteweg–de Vries equation”, Mathematical problems in the theory of water waves: Proc. Workshop (Luminy, 1995), Contemp. Math., 200, Amer. Math. Soc., Providence, RI, 1996, 1–15 | DOI | MR | Zbl

[3] Bakholdin I., Il'ichev A., “Solitary-wave decay in a cold plasma”, J. Plasma Phys., 60:3 (1998), 569–580 | DOI

[4] Bakholdin I.B., Ilichev A.T., “Fast magnetosonic solitonic structures in a quasi-neutral collision-free finite-beta plasma”, Wave Motion, 112 (2022), 102936 | DOI | MR

[5] Benilov E.S., Grimshaw R., Kuznetsova E.P., “The generation of radiating waves in a singularly-perturbed Korteweg–de Vries equation”, Physica D, 69:3–4 (1993), 270–278 | DOI | MR | Zbl

[6] Benjamin T.B., Feir J.E., “The disintegration of wave trains on deep water. Part 1: Theory”, J. Fluid Mech., 27:3 (1967), 417–430 | DOI | Zbl

[7] E. T. Copson, Asymptotic Expansions, Cambridge Tracts Math. Math. Phys., 55, Univ. Press, Cambridge, 1965 | MR | Zbl

[8] Dias F., Il'ichev A., “Interfacial waves with free-surface boundary conditions: An approach via a model equation”, Physica D, 150:3–4 (2001), 278–300 | DOI | MR | Zbl

[9] Grimshaw R., Malomed B., Benilov E., “Solitary waves with damped oscillatory tails: An analysis of the fifth-order Korteweg–de Vries equation”, Physica D, 77:4 (1994), 473–485 | DOI | MR | Zbl

[10] Haragus M., Lombardi E., Scheel A., “Spectral stability of wave trains in the Kawahara equation”, J. Math. Fluid Mech., 8:4 (2006), 482–509 | DOI | MR | Zbl

[11] Il'ichev A., “Steady waves in a cold plasma”, J. Plasma Phys., 55:2 (1996), 181–194 | DOI

[12] A. T. Il'ichev, “Solitary waves in media with dispersion and dissipation (a review)”, Fluid Dyn., 35:2 (2000), 157–176 | DOI | Zbl

[13] Ilichev A.T., Uedinennye volny v modelyakh gidromekhaniki, Fizmatlit, M., 2003

[14] A. T. Il'ichev and A. V. Marchenko, “Propagation of long nonlinear waves in a ponderable fluid beneath an ice sheet”, Fluid Dyn., 24:1 (1989), 73–79 | DOI | MR | Zbl

[15] Iooss G., Kirchgässner K., “Water waves for small surface tension: An approach via normal form”, Proc. R. Soc. Edinburgh. Sect. A, 122:3–4 (1992), 267–299 | DOI | MR | Zbl

[16] V. I. Karpman, Non-Linear Waves in Dispersive Media, Pergamon, Oxford, 1975 | MR

[17] Lombardi E., “Orbits homoclinic to exponentially small periodic orbits for a class of reversible systems. Application to water waves”, Arch. Ration. Mech. Anal., 137:3 (1997), 227–304 | DOI | MR | Zbl

[18] Mielke A., “Reduction of quasilinear elliptic equations in cylindrical domains with applications”, Math. Methods Appl. Sci., 10:1 (1988), 51–66 | DOI | MR | Zbl

[19] Mielke A., “Homoclinic and heteroclinic solutions in two-phase flow”, Structure and dynamics of nonlinear waves in fluids: Proc. IUTAM/ISIMM Symp. (Hannover, 1994), Adv. Ser. Nonlinear Dyn., 7, World Scientific, Singapore, 1995, 353–362 | MR | Zbl

[20] Sulem C., Sulem P.-L., The nonlinear Schrödinger equation: Self-focusing and wave collapse, Appl. Math. Sci., 139, Springer, New York, 1999 | MR | Zbl

[21] Sun S.M., “Existence of a generalized solitary wave solution for water with positive Bond number less than $1/3$”, J. Math. Anal. Appl., 156:2 (1991), 471–504 | DOI | MR | Zbl

[22] Sun S.M., Shen M.C., “Exact theory of generalized solitary waves in a two-layer liquid in the absence of surface tension”, J. Math. Anal. Appl., 180:1 (1993), 245–274 | DOI | MR | Zbl